摘要:
A system for performing code optimization is described which includes an optimizing analyzer within a compiler to generate a first optimizing transformation and a second optimizing transformation and their satisfying conditions for a compiled code. An optimization transformation module is placed within a linker to determine which of the first and second optimizing transformations should be selected when the compiled code is linked with other compiled codes, and to execute the selected one of the first and second optimizing transformations at link-time. A method of performing code optimization is also described.
摘要:
Embodiments of a method and system for compiling code, such as program-generated code, are disclosed herein. The method and system efficiently encode combined range and stride checks. For example, the method and system are operable to encode combined range and stride checks as they occur in a translation of switch statements. The method and system can generate code to perform the range and stride check, and to branch to the case body, if the range and stride checks are successful. The various embodiments may operate to provide an efficient code transformation, better code density, and processing performance. Other embodiments are described and claimed.
摘要:
A method according to one embodiment includes the operations of receiving a list of one or more data race analysis targets, wherein the data race analysis targets comprise at least one of a source file name, source file line, function name, variable name or target address range; generating a data race analysis filter, wherein the data race analysis filter comprises a data structure including memory address ranges based on the list of data race analysis targets; and performing a data race analysis on a memory access, wherein the memory access is associated with memory addresses included in the data race analysis filter.
摘要:
A method according to one embodiment includes the operations of receiving a list of one or more data race analysis targets, wherein the data race analysis targets comprise at least one of a source file name, source file line, function name, variable name or target address range; generating a data race analysis filter, wherein the data race analysis filter comprises a data structure including memory address ranges based on the list of data race analysis targets; and performing a data race analysis on a memory access, wherein the memory access is associated with memory addresses included in the data race analysis filter.
摘要:
Technologies for bridging trace gaps include a computing device that traces execution of a program to generate an execution trace and identifies a trace gap in the execution trace. The computing device generates a first call stack that corresponds to a location immediately before the trace gap and a second call stack that corresponds to a location immediately after the trace gap. Each call stack identifies a list of functions, and each function corresponds to a source function of the program. The computing device evaluates connection pairs between the first call stack and the second call stack to determine whether each connection pair is valid and, for each valid connection pair, a number of matching functions. The computing device selects a connection pair that is valid and has a largest number of matching functions and bridges the trace gap with the selected connection pair. Other embodiments are described and claimed.
摘要:
In accordance with some embodiments, a granularity of memory such as block, may be deleted in a way to make it very difficult for an interloper to ever gain access to that block. Moreover the deletion may be done in a sufficiently efficient way and in a way that does not overly burden the user. In some embodiments, the encryption of the granularity of memory (such as a block) may be handled entirely within the memory. Then the encryption process cannot be accessed from the outside and the user need not be burdened with the sequence of encryption sequence since it is done automatically within the storage device.
摘要:
Technologies for control flow exploit mitigation include a computing device having a processor with real-time instruction tracing support. During execution of a process, the processor generates trace data indicative of control flow of the process. The computing device analyzes the trace data to identify suspected control flow exploits. The computing device may use heuristic algorithms to identify return-oriented programming exploits. The computing device may maintain a shadow stack based on the trace data. The computing device may identify indirect branches to unauthorized addresses based on the trace data to identify jump-oriented programming exploits. The computing device may check the trace data whenever the process is preempted. The processor may detect mispredicted return instructions in real time and invoke a software handler in the process space of the process to verify and maintain the shadow stack. Other embodiments are described and claimed.
摘要:
The method and apparatus for compiling high level code is described. A method may be utilized that may include integrating the allocation of registers, scheduling instructions, and selecting code functions to produce an intermediate representation of a high level code segment with scheduled instructions. Additionally, a modular conflict handler may be utilized to resolve register and/or scheduler conflicts as may be required or useful in compiling the high level code. Also, a modular transformation interface may be utilized to invoke analyzers as may be required or useful to generate a compiled version of the high level code.