摘要:
A calculating device and method provided for a shaking test apparatus for carrying out a shaking test on a structure by using a partial structure and a numerical model which is virtually connected to the partial structure. The calculating device includes a calculation part which identifies a vibration model corresponding to the partial structure on the basis of displacement and reaction force detected in response to shaking and which combines the vibration model and the numerical model with each other to construct a model of the overall system corresponding to the structure and calculates the shaking response of the overall system model.
摘要:
A shaking response is estimated with high precision by performing a shaking test f or combining and estimating a shaking characteristic of a partial structure of an object under test obtained through a shaking test and a shaking response of the whole structure which is numerically modeled. In a shaking test apparatus and method, a structure under test comprises a partial structure and a numerical model which is virtually connected to the partial structure. First, a vibration model corresponding to the partial structure is assumed, the numerical model and the vibration model are combined to construct an overall-system model, and then the vibration response of the overall-system model is calculated. On the basis of the calculation result and the signal input from a waveform oscillator, the partial structure is shaken by using a shaker. The displacement and reaction force of the partial structure are measured by a displacement gauge and a load cell, the vibration model is corrected on the basis of the measurement value and the overall-system model is reconstructed. This procedure is repeated to construct the overall-system model with high precision.
摘要:
The testing performs a vibration excitation testing of a part of the structure, performs a numerical calculus of vibration response of the other parts of the structure, and calculates the vibration response of a whole of the structure by combining these two methods. Testing includes calculating a position of a point of exciting force on the basis of vibration exciting, and calculating a reaction force on the basis of a load detected and the position of the point of exciting force. Then, a displacement of a numerical model is computed by using the reaction force calculated and a known external force, and calculating a vibration exciting machine displacement command value on the basis of the displacement. A drive drives the vibration exciting on the basis of an output thereof. Vibration excitation is performed in the translational direction as well as the rotational direction.
摘要:
The testing performs a vibration excitation testing of a part of the structure, performs a numerical calculus of vibration response of the other parts of the structure, and calculates the vibration response of a whole of the structure by combining these two methods. Testing includes calculating a position of a point of exciting force on the basis of vibration exciting, and calculating a reaction force on the basis of a load detected and the position of the point of exciting force. Then, a displacement of a numerical model is computed by using the reaction force calculated and a known external force, and calculating a vibration exciting machine displacement command value on the basis of the displacement. A drive drives the vibration exciting on the basis of an output thereof. Vibration excitation is performed in the translational direction as well as the rotational direction.
摘要:
Measured values obtained from a running test of an object to be tested and a module on a test bench such as a flat belt type chassis dynamo, and computation based upon numerical models of components other than the object to be tested and the module, are related to each other so as to reproduce a condition near to an actual running condition, for the object to be tested and the module so as to precisely analyze how the object to be tested and the module affects upon the motion of the overall vehicle during actual running of the vehicle. Thus it is possible to evaluate dynamic characteristics of respective vehicle components and a module which relate to the maneuvering performance of the vehicle, on a test bench in a condition in which a load variation and an alignment variation are taken into consideration.
摘要:
Provided is a vehicle testing apparatus which involves load variation and alignment variation, for analyzing a maneuverability of a vehicle on flat belts or rollers adapted to be rotated together with wheels of the vehicle, and in particular, maneuver variation. Load variation caused by an inertia force and a gravitational force which are produced during actual running of the vehicle, and tire alignment variation caused by suspension strokes, are forcibly reproduced by forces produced by actuators or a gravitational force, thereby it is possible to evaluate a maneuverability of the vehicle in a condition substantially the same as that during actual running of the vehicle.
摘要:
A shaking test system for testing a structure including a shaking device for shaking the structure, measuring devices mounted on the shaking device for shaking the structure, external signal input device for inputting data indicative of external force for shaking the structure, as well as other calculating arrangements. The shaking test system permits the setting of a large time interval of a shaking test by converting natural modes of vibration expressed by a second-order differential equation, namely second-order lag system of a vibration differential equation into a first-order lag system or (O)th order lag system for short period mode.
摘要:
A vibration test system for structures comprises a vibration exciter that vibrates a real model portion, a load meter that measures a load, and a computer that receives a numerical model representing a numerical model portion. The computer includes a block that calculates a displacement, which is made in a predetermined time after completion of measurement, according to a load value and an external force value. A signal production block produces a command signal using as a target value the displacement calculated by the displacement calculation block. A step control block controls the displacement calculation block and signal production block so that they will act cyclically. The displacement calculation block uses an αOS method to time integrate a solution of a vibrational equation.
摘要:
A vehicle testing system for simulating a vehicular motion and vehicular vibration caused thereby is provided to test a front or rear wheel section of a four-wheel vehicle. The testing system comprises a vehicle suspension system, a wheel attached thereto, a first actuator for exciting the wheel based on data concerning road and other conditions, and a dummy vehicle body linked to the suspension system and having a frame, a reaction measuring device linked to the frame and a second actuator for exciting the frame. When the wheel is excited corresponding to the data on road and other conditions, the suspension system and the dummy body vibrate. The reaction force generated by the suspension system is measured by the reaction measuring device. Using the measured value, the digital computer calculates vibrational response after an elapse of a predetermined time of a body numerical model and the like imaginary linked with the dummy body to excite and control the first actuator so that the vibrational response is made by the dummy body and the suspension system after the elapse of the predetermined time. Accordingly, it becomes possible to conduct a test similar to an actual car test by using a partial model composed of parts of an actual vehicle.
摘要:
A shaking table has a control unit for controlling the shaking table so that a target waveform signal is reproduced with at least an acceleration measuring signal as a feedback signal. The control unit is adapted for effecting control by employing the force applied to the shaking table from a specimen under test loaded on the shaking table as the feedback signal. As a control error deriving from the force is canceled, highly accurate acceleration reproducibility is attainable even in the case of a non-linear specimen under test whose dynamic characteristics fluctuate with time.