摘要:
The solid-state image sensor 10 includes an array of photosensitive cells and an array 100 of dispersing elements. The photosensitive cell array is comprised of unit blocks 40, each including four photosensitive cells 2a, 2b, 2c and 2d. The dispersing element array 100 makes light, obtained by subtracting a light ray with a first color component C1 from the incoming light W and adding a light ray with a second color component C2 to the remainder, incident on the first photosensitive cell 2a, also makes light, obtained by subtracting the light ray with the second color component C1 from the incoming light W and adding the light ray with the first color component C1 to the remainder, incident on the second photosensitive cell 2b, further makes light, obtained by subtracting the light rays with the first and second color components C1+C2 from the incoming light W, incident on the third photosensitive cell 2c, and further makes light, obtained by adding the light rays with the first and second color components C1+C2 to the incoming light W, incident on the fourth photosensitive cell 2d.
摘要:
The solid-state image sensor 10 includes an array of photosensitive cells and an array 100 of dispersing elements. The photosensitive cell array is comprised of unit blocks 40, each including four photosensitive cells 2a, 2b, 2c and 2d. The dispersing element array 100 makes light, obtained by subtracting a light ray with a first color component C1 from the incoming light W and adding a light ray with a second color component C2 to the remainder, incident on the first photosensitive cell 2a, also makes light, obtained by subtracting the light ray with the second color component C1 from the incoming light W and adding the light ray with the first color component C1 to the remainder, incident on the second photosensitive cell 2b, further makes light, obtained by subtracting the light rays with the first and second color components C1+C2 from the incoming light W, incident on the third photosensitive cell 2c, and further makes light, obtained by adding the light rays with the first and second color components C1+C2 to the incoming light W, incident on the fourth photosensitive cell 2d.
摘要:
A solid-state image sensor includes a photosensitive cell array and a dispersing element array. Each unit block 40 of the photosensitive cell array includes four photosensitive cells 2a, 2b, 2c and 2d. The dispersing element array makes light, obtained by subtracting a light ray with a first color component (C1) from incoming light (W) and adding a light ray with a second color component (C2) thereto, incident on the first photosensitive cell 2a, also makes light, obtained by subtracting the light ray with the second color component (C2) from the incoming light (W) and adding the light ray with the first color component (C1) thereto, incident on the second photosensitive cell 2b, further makes light, obtained by subtracting a light ray with a third color component (C3) from the incoming light (W) and adding the light rays with the first and second color components (C4=C1+C2) thereto, incident on the third photosensitive cell 2c, and further makes light, obtained by subtracting the light rays with the first and second color components (C4) from the incoming light (W) and adding the light ray with the third color Component (c3)thereto, incident on the fourth photosensitive cell 2d.
摘要:
A solid-state image sensor includes a photosensitive cell array and a dispersing element array. Each unit block 40 of the photosensitive cell array includes four photosensitive cells 2a, 2b, 2c and 2d. The dispersing element array makes light, obtained by subtracting a light ray with a first color component (C1) from incoming light (W) and adding a light ray with a second color component (C2) thereto, incident on the first photosensitive cell 2a, also makes light, obtained by subtracting the light ray with the second color component (C2) from the incoming light (W) and adding the light ray with the first color component (C1) thereto, incident on the second photosensitive cell 2b, further makes light, obtained by subtracting a light ray with a third color component (C3) from the incoming light (W) and adding the light rays with the first and second color components (C4==C1+C2) thereto, incident on the third photosensitive cell 2c, and further makes light, obtained by subtracting the light rays with the first and second color components (C4) from the incoming light (W) and adding the light ray with the third color component (C3) thereto, incident on the fourth photosensitive cell 2d.
摘要:
A solid-state image sensor according to the present invention includes: a semiconductor layer 7, which has a first surface and a second surface that is opposite to the first surface; a photosensitive cell array, which has been formed in the semiconductor layer 7 to receive light through both of the first and second surfaces; and at least one dispersive element array, which is arranged on the same side as at least one of the first and second surfaces so as to face the photosensitive cell array. The photosensitive cell array includes first and second photosensitive cells 2a and 2b. And the dispersive element array makes light rays falling within mutually different wavelength ranges incident on the first and second photosensitive cells 2a and 2b, respectively.
摘要:
Light-splitting elements are arranged in at least two columns and two rows to form two pairs 1a, 1b and 1c, 1d. Each element splits incident light into light rays and makes them fall on a portion of a photosensing section right under itself and an adjacent photosensitive cell. The element 1a splits the incident light so that a primary color ray C1 and its complementary color ray C1′ enter an adjacent cell 2b and an underlying cell 2a, respectively. The element 1b makes a primary color ray C2 and its complementary color ray C2′ enter an underlying cell 2a and an adjacent cell 2a, respectively. The element 1c does the same as the element 1b. And the element 1d makes a primary color ray C3 and its complementary color ray C3′ enter an adjacent cell 2c and an underlying cell 2d, respectively. These photosensitive cells 2 perform photoelectric conversion, thereby outputting an electrical signal representing the intensity of the incident light. By carrying out simple calculations between the outputs of these cells, a color signal and a luminance signal are generated.
摘要:
Light-splitting elements are arranged in at least two columns and two rows to form two pairs 1a, 1b and 1c, 1d. Each element splits incident light into light rays and makes them fall on a portion of a photosensing section right under itself and an adjacent photosensitive cell. The element 1a splits the incident light so that a primary color ray C1 and its complementary color ray C1′ enter an adjacent cell 2b and an underlying cell 2a, respectively. The element 1b makes a primary color ray C2 and its complementary color ray C2′ enter an underlying cell 2a and an adjacent cell 2a, respectively. The element 1c does the same as the element 1b. And the element 1d makes a primary color ray C3 and its complementary color ray C3′ enter an adjacent cell 2c and an underlying cell 2d, respectively. These photosensitive cells 2 perform photoelectric conversion, thereby outputting an electrical signal representing the intensity of the incident light. By carrying out simple calculations between the outputs of these cells, a color signal and a luminance signal are generated.
摘要:
The solid state image sensor of this invention includes multiple units, each of which includes first and second photosensitive cells 2a, 2b and a dispersive element 1a facing the first cell 2a. The element 1a passes a part of incoming light with a first color component to the second cell 2b. The first cell 2a receives a smaller quantity of light with the first color component than that of the light with the first color component incident on the dispersive element. The second cell 2b receives a greater quantity of light with the first color component than that of the light with the first color component incident on the dispersive element. The quantity of that part of the incoming light with the first color component is calculated based on the difference between photoelectrically converted signals supplied from the first and second cells 2a and 2b and information representing the ratio of the quantity of the light with the first color component received by the second cell to that of the part of the incoming light with the first color component.
摘要:
The solid state image sensor of this invention includes multiple units, each of which includes first and second photosensitive cells 2a, 2b and a dispersive element 1a facing the first cell 2a. The element 1a passes a part of incoming light with a first color component to the second cell 2b. The first cell 2a receives a smaller quantity of light with the first color component than that of the light with the first color component incident on the dispersive element. The second cell 2b receives a greater quantity of light with the first color component than that of the light with the first color component incident on the dispersive element. The quantity of that part of the incoming light with the first color component is calculated based on the difference between photoelectrically converted signals supplied from the first and second cells 2a and 2b and information representing the ratio of the quantity of the light with the first color component received by the second cell to that of the part of the incoming light with the first color component.
摘要:
A depth estimating image capture device as an embodiment of this invention includes: an image sensor 2 with photosensitive cells 10 arranged on its image capturing plane; an optical lens arranged to condense light on the plane; a light-transmitting member 1 arranged on the plane; and a signal processing section that processes signals supplied from the cells 10. The member 1 includes a first mirror 1a inside to reflect the light at least partially and a second mirror 1b with the same reflection property as the first mirror 1a on its upper surface. The first mirror 1a has a reflective surface tilted with respect to the upper surface of the member 1. The second mirror 1b has a reflective surface that is parallel to the upper surface. The first and second mirrors 1a and 1b are arranged so that a light beam coming from a point on a subject through the lens is reflected from the first mirror 1a and from the second mirror 1b and irradiates some area on the image capturing plane to make the irradiated area change according to the depth of the point on the subject.