摘要:
A heating roller performs electromagnetic induction heating, and includes a first exciting coil that heats the heating roller, a first degaussing coil that decreases magnetic fields of the first exciting coil, and a first axial direction core that guides magnetic fluxes, to make up a magnetic circuit between the first axial direction core and the heating roller. The width of a heat zone is controlled in agreement with a sheet feeding area. Thus, the capability to control a temperature increase in a non-sheet-feeding area of the heating roller is enhanced. Power can be saved during continual feeding of small recording sheets.
摘要:
A fixing apparatus of the present invention for an electronic induction heating system includes a heat roller and a magnetic excitation coil that generates Joule heat within the heat roller. The fixing apparatus includes a coil positioner that positions the magnetic excitation coil around a portion of a periphery of the heat roller, a fixing roller that fixes toner image on a recording medium, and a belt that contacts a portion of a periphery of the heat roller and the fixing roller to conduct the generated heat from the heat roller to the fixing roller. The coil positioner further has a surface of first curvature substantially identical to a curvature of a periphery of the heat roller at an opposition area, the opposition area being opposite to a contact area where the heat roller makes contact with the belt. The coil positioner is spaced from the belt by a predetermined distance. The coil positioner further has a first extension extending from a first end of the opposition area of the coil positioner and a second extension extending from a second end of the opposition area of the coil positioner. The first extension and the second extension are spaced from the belt distances larger than the predetermined distance.
摘要:
A fixing apparatus of the present invention for an electronic induction heating system includes a heat roller and a magnetic excitation coil that generates Joule heat within the heat roller. The fixing apparatus includes a coil positioner that positions the magnetic excitation coil around a portion of a periphery of the heat roller, a fixing roller that fixes toner image on a recording medium, and a belt that contacts a portion of a periphery of the heat roller and the fixing roller to conduct the generated heat from the heat roller to the fixing roller. The coil positioner further has a surface of first curvature substantially identical to a curvature of a periphery of the heat roller at an opposition area, the opposition area being opposite to a contact area where the heat roller makes contact with the belt. The coil positioner is spaced from the belt by a predetermined distance. The coil positioner further has a first extension extending from a first end of the opposition area of the coil positioner and a second extension extending from a second end of the opposition area of the coil positioner. The first extension and the second extension are spaced from the belt distances larger than the predetermined distance.
摘要:
A fixing apparatus of the present invention for an electronic induction heating system comprises a heat roller and a magnetic excitation coil that generates Joule heat within the heat roller. The fixing apparatus comprises a coil positioner that positions the magnetic excitation coil around a portion of a periphery of the heat roller, and a fixing roller that fixes toner image on a recording medium. The fixing apparatus comprises a belt that contacts a portion of a periphery of the heat roller and the fixing roller to conduct the generated heat from the heat roller to the fixing roller. The coil positioner further has a surface of first curvature substantially identical to a curvature of a periphery of the heat roller at an opposition area, the opposition area being opposite to a contact area where the heat roller makes contact with the belt. The coil positioner is spaced from the belt by a predetermined distance. The coil positioner further has a first extension extending from a first end of the opposition area of the coil positioner and a second extension extending from a second end of the opposition area of the coil positioner. The first extension and the second extension are spaced from the belt distances larger than the predetermined distance.
摘要:
There are provided a first excitation coil that is wound so as to have an axis in the same direction as that of a shaft of a heating roller and that is connected to a first power source, and a second excitation coil that is wound so as to have an axis in a direction substantially orthogonal to the shaft of the heating roller and that is connected to a second power source. The second excitation coil has parallel portions that extend in parallel to an axial direction of the first excitation coil and two folded sections provided at respective ends of the parallel portions. The two folded sections are provided along a circumference of the first excitation coil in such a way that circular arcs of the respective folded sections become opposite in direction to each other. Thus, the maximum available power is increased. When rapid warm-up is required, heating is caused by a coil connected to the auxiliary power source, to thus shorten a warm-up time. Occurrence of a temperature drop at the ends of the heating roller is prevented, to thus enhance energy efficiency. In ordinary situations other than the rapid warm-up operation, recharging can be performed by use of the coil.
摘要:
A deflection yoke is used for a cathode ray tube (CRT) including a glass tube having a screen surface and a straight portion for accommodating an electron gun. The deflection yoke includes a main deflection yoke including first and second horizontal deflecting coils and first and second vertical deflecting coils, and a sub-deflection yoke provided at a side of the main deflection yoke towards the electron gun of the CRT. The first and second horizontal deflecting coils have substantially saddle shapes and includes first and second coil-connection-wire sections and first and second horizontal deflection sections, respectively. The first and second coil-connection-wire sections are wound in a direction perpendicular to a tube axis of the CRT and along the straight portion, respectively. The first and second horizontal deflection sections are located towards the screen surface from the first and the second coil-connection-wire sections, respectively. In the deflection yoke, magnetic lines emitted from a rear end of the horizontal deflecting coil towards the electron gun decreases. An induced voltage generated at the sub-deflection yoke accordingly decreases, and thus, a noise on a screen noise produced due to the induced voltage is reduced.