摘要:
The present invention is a method for predicting the grain size distribution at a designated location within a water-lain sedimentary deposit. Initially, the vertical thickness of the sedimentary deposit at the designated location must be determined, as well as the vertical thickness and grain size distribution at a second location different from the designated location. Second, a distance parameter corresponding to the two locations must be determined. Finally the distance parameter is used, along with the initially determined vertical thickness at both locations and the grain size distribution at the second location to calculate the grain size distribution at the designated location.
摘要:
A method is disclosed for simulating the formation of sedimentary deposits. In one embodiment, this method involves, (a) solving a two-dimensional time-dependent map view system of equations for at least flow momentum, flow height, suspended sediment concentration, and entrainment of overlying water, (b) calculating net sediment deposition at each map view location using the flow properties, (c) recording the time-variability of the net sediment deposition.
摘要:
The properties of a water-lain sediment body are determined from a measurement of grain size distribution and deposit thickness at one location in the body is disclosed. The flow properties at the measured location are determined, the flow properties are extrapolated back to the inlet through which the depositing flow was emitted, at least one property of the water-lain sediment throughout the sediment body is determined by modeling the flow properties using the extrapolated flow properties at the inlet as a boundary condition. The flow properties associated with the sediment body include flow velocity, suspended sediment volume fractions, deposition time, and flow height. The properties of the water-lain sediments include, in addition to the flow properties associated with deposition of the sediments, the thickness of the sediment body, the size of the body, the shape of the body, and the grain size distribution at each point within the body.
摘要:
A method is disclosed for using a three-dimensional seismic image of a subsurface earth volume to construct a geologic model specifying the spatially-varying grain size distribution, porosity, and permeability throughout the volume. The method applies to earth volumes composed of water-lain clastic sedimentary deposits and involves, in one embodiment, (a) identifying the outline forms of geologic bodies in geologic data; (b) using the outline forms of the geologic bodies to determine the spatially-varying grain size distribution within the bodies, guided by assumptions about the nature and behavior of the paleoflow that deposited the bodies; (c) determining rock properties such as, porosity and permeability within the geologic bodies based on grain-size distribution, mineralogy and burial history information.
摘要:
A method is disclosed for using a three-dimensional seismic image of a subsurface earth volume to construct a geologic model specifying the spatially-varying grain size distribution, porosity, and permeability throughout the volume. The method applies to earth volumes composed of water-lain clastic sedimentary deposits and involves, in one embodiment, (a) identifying the outline forms of geologic bodies in geologic data; (b) using the outline forms of the geologic bodies to determine the spatially-varying grain size distribution within the bodies, guided by assumptions about the nature and behavior of the paleoflow that deposited the bodies; (c) determining rock properties such as, porosity and permeability within the geologic bodies based on grain-size distribution, mineralogy and burial history information.
摘要:
A method of hydrodynamics-based gridding (Hydro-Grids) for creating geologic models of subsurface volumes, such as reservoirs, is disclosed. Geologic data is obtained. Vertical grid surfaces are created. Lateral grid surfaces are created to correspond to surfaces of constant geologic time during the deposition of sediments in the subsurface volume. Geologic properties within each cell are represented as values within each cell created by the vertical and lateral surfaces. Reservoir performance is simulated using the represented geologic properties of the subsurface volume. A hydrocarbon reservoir is developed based on the simulated reservoir performance.
摘要:
The present invention is a method for predicting the grain size distribution at a designated location within a water-lain sedimentary deposit. Initially, the vertical thickness of the sedimentary deposit at the designated location must be determined, as well as the vertical thickness and grain size distribution at a second location different from the designated location. Second, a distance parameter corresponding to the two locations must be determined. Finally the distance parameter is used, along with the initially determined vertical thickness at both locations and the grain size distribution at the second location to calculate the grain size distribution at the designated location.
摘要:
A method of hydrodynamics-based gridding (Hydro-Grids) for creating geologic models of subsurface volumes, such as reservoirs, is disclosed. Geologic data is obtained. Vertical grid surfaces are created. Lateral grid surfaces are created to correspond to surfaces of constant geologic time during the deposition of sediments in the subsurface volume. Geologic properties within each cell are represented as values within each cell created by the vertical and lateral surfaces. Reservoir performance is simulated using the represented geologic properties of the subsurface volume. A hydrocarbon reservoir is developed based on the simulated reservoir performance.
摘要:
The present invention is a method of hydrodynamics-based gridding (Hydro-Grids) for creating geologic models of subsurface volumes, such as reservoirs. Vertical grid surfaces may be chosen in an unstructured fashion to provide lateral resolution where needed. Lateral grid surfaces are created to represent surfaces of constant geologic time based on simulation of the depositional processes that created the subsurface volume. The values of geologic properties are then specified within each cell created by the intersections of the vertical and lateral surfaces. The geologic data may include, for example, seismic data, outcrop studies, well log data, core data, numerical modeling data, and interpreted stratigraphic surfaces based on seismic data. The modeled geologic properties of the subsurface volume may include, for example, grain size distribution, connectivity, net-to-gross, porosity, permeability and pore pressure.
摘要:
The present invention is a method of hydrodynamics-based gridding (Hydro-Grids) for creating geologic models of subsurface volumes, such as reservoirs. Vertical grid surfaces may be chosen in an unstructured fashion to provide lateral resolution where needed. Lateral grid surfaces are created to represent surfaces of constant geologic time based on simulation of the depositional processes that created the subsurface volume. The values of geologic properties are then specified within each cell created by the intersections of the vertical and lateral surfaces. The geologic data may include, for example, seismic data, outcrop studies, well log data, core data, numerical modeling data, and interpreted stratigraphic surfaces based on seismic data. The modeled geologic properties of the subsurface volume may include, for example, grain size distribution, connectivity, net-to-gross, porosity, permeability and pore pressure.