摘要:
Embodiments of an improved implantable medical device system for orientation-independent telemetry to and from the device are disclosed. The system includes an external controller which produces an electromagnetic field to induce a current in a coil in the implantable medical device and vise versa. In a preferred embodiment, the external controller comprises three orthogonal coils, each of which is potentially activated to generate or receive the electromagnetic field. Algorithms are disclosed to allow for the choice of one or more of the coils best suited for telemetry based on the chosen coil's orientation with respect to the telemetry coil in the implantable medical device. Because all three of the orthogonal coils are potentially activated if necessary, the result is that at least one of the coils will be in a proper orientation with respect to the coil in the implantable medical device, thereby improving telemetry efficiency. The disclosed techniques may be used to improve induction-based powering or charging of the device as well.
摘要:
Embodiments of an improved implantable medical device system for orientation-independent telemetry to and from the device are disclosed. The system includes an external controller which produces an electromagnetic field to induce a current in a coil in the implantable medical device and vise versa. In a preferred embodiment, the external controller comprises three orthogonal coils, each of which is potentially activated to generate or receive the electromagnetic field. Algorithms are disclosed to allow for the choice of one or more of the coils best suited for telemetry based on the chosen coil's orientation with respect to the telemetry coil in the implantable medical device. Because all three of the orthogonal coils are potentially activated if necessary, the result is that at least one of the coils will be in a proper orientation with respect to the coil in the implantable medical device, thereby improving telemetry efficiency. The disclosed techniques may be used to improve induction-based powering or charging of the device as well.
摘要:
A method for telemetry between an implantable medical device and an external programming component is disclosed. The telemetry circuitry of the implantable device is initially powered on for only a portion of the time needed to receive the entirety of a wake-up signal from the external component. During that time, only a first portion of the wake-up signal as received form the external component is checked against the implantable device's understanding of that first portion as stored in its memory. If the implantable device does not recognize the received first portion, powering on of the telemetry circuitry is terminated. However, if that first portion is recognized, then the implantable device continues to power on the telemetry circuitry to receive another (second) portion of the wake-up signal. If that received second portion is recognized, then the telemetry circuitry is further powered to receive a next (third) portion of the wake-up signal from the external component, etc., until the entirety of the wake-up signal is recognized by the implantable device as having been received.
摘要:
An improved telemetry protocol for an implantable medical device is disclosed. The sending device forms a block of information to be telemetered to the receiving device in a typical fashion, including a header, a message, and an error detection data, such as a Cyclic Redundancy Code (CRC) for that data. This CRC, called CRC1, is preferably computed using a first CRC polynomial. Then, the entirety of the block is divided into smaller packets of a predetermined byte size. Each packet, regardless of its contents, has a CRC computed for it (CRC2) preferably computed using a second CRC polynomial. Each packet with its appended CRC2 is sent to the receiving device, which deduces a CRC2 and compares it with the appended CRC2. If not valid, that packet is again requested to be resent. If valid, the next packet is requested to be sent, its CRC2 checked, etc., until all packets are received and verified. The receiving device then discards the CRC2s to reconstitute the original block. The receiving device then deduces CRC1 and compares it with the CRC1 appended to the block. If valid, the block is accepted, and if not, the procedure is repeated for the block.
摘要:
A telemetry protocol for an implantable medical device is disclosed. The sending device forms a block of information to be telemetered to the receiving device, including a header, a message, and an error detection data (CRC1). The entirety of the block is divided into smaller packets of a predetermined size. Each packet has a CRC computed for it (CRC2), and is sent to the receiving device, which deduces a CRC2 and compares it with the appended CRC2. If not valid, that packet is again requested to be resent. If valid, the next packet is requested to be sent, its CRC2 checked, etc., until all packets are received and verified. The receiving device then discards the CRC2s to reconstitute the original block. The receiving device then deduces CRC1 and compares it with the CRC1 appended to the block. If valid, the block is accepted, and if not, the procedure is repeated.
摘要:
A telemetry protocol for an implantable medical device is disclosed. The sending device forms a block of information to be telemetered to the receiving device, including a header, a message, and an error detection data (CRC1). The entirety of the block is divided into smaller packets of a predetermined size. Each packet has a CRC computed for it (CRC2), and is sent to the receiving device, which deduces a CRC2 and compares it with the appended CRC2. If not valid, that packet is again requested to be resent. If valid, the next packet is requested to be sent, its CRC2 checked, etc., until all packets are received and verified. The receiving device then discards the CRC2s to reconstitute the original block. The receiving device then deduces CRC1 and compares it with the CRC1 appended to the block. If valid, the block is accepted, and if not, the procedure is repeated.