摘要:
This invention provides a system and method for capturing, detecting and extracting features of an ID, such as a 1D barcode, that employs an efficient processing system based upon a CPU-controlled vision system on a chip (VSoC) architecture, which illustratively provides a linear array processor (LAP) constructed with a single instruction multiple data (SIMD) architecture in which each pixel of the rows of the pixel array are directed to individual processors in a similarly wide array. The pixel data are processed in a front end (FE) process that performs rough finding and tracking of regions of interest (ROIs) that potentially contain ID-like features. The ROI-finding process occurs in two parts so as to optimize the efficiency of the LAP in neighborhood operations—a row-processing step that occurs during image pixel readout from the pixel array and an image-processing step that occurs typically after readout occurs. The relative motion of the ID-containing ROI with respect to the pixel array is tracked and predicted. An optional back end (BE) process employs the predicted ROI to perform feature-extraction after image capture. The feature extraction derives candidate ID features that are verified by a verification step that confirms the ID, creates a refined ROI, angle of orientation and feature set. These are transmitted to a decoding processor or other device.
摘要:
This invention provides a system and method for capturing, detecting and extracting features of an ID, such as a 1D barcode, that employs an efficient processing system based upon a CPU-controlled vision system on a chip (VSoC) architecture, which illustratively provides a linear array processor (LAP) constructed with a single instruction multiple data (SIMD) architecture in which each pixel of the rows of the pixel array are directed to individual processors in a similarly wide array. The pixel data are processed in a front end (FE) process that performs rough finding and tracking of regions of interest (ROIs) that potentially contain ID-like features. The ROI-finding process occurs in two parts so as to optimize the efficiency of the LAP in neighborhood operations—a row-processing step that occurs during image pixel readout from the pixel array and an image-processing step that occurs typically after readout occurs. The relative motion of the ID-containing ROI with respect to the pixel array is tracked and predicted. An optional back end (BE) process employs the predicted ROI to perform feature-extraction after image capture. The feature extraction derives candidate ID features that are verified by a verification step that confirms the ID, creates a refined ROI, angle of orientation and feature set. These are transmitted to a decoding processor or other device.
摘要:
An embodiment of the invention provides a method for training a system to inspect a spatially distorted pattern. A digitized image of an object, including a region of interest, is received. The region of interest is further divided in to a plurality of sub-regions. A size of each of the sub-regions is small enough such that a conventional inspecting method can reliably inspect each of the sub-regions. A search tool and an inspecting tool are trained for a respective model for each of the sub-regions. A search tree is built for determining an order for inspecting the sub-regions. A coarse alignment tool is trained for the region of interest. Another embodiment of the invention provides a method for inspecting a spatially distorted pattern. A coarse alignment tool is run to approximately locate a pattern. Search tree information and an approximate location of a root image, found by the coarse alignment tool, is used to locate sub-regions sequentially in an order according to the search tree information. Each of the sub-regions is inspected, the sub regions being small enough such that a conventional inspecting method can reliably inspect each of the sub-regions.