摘要:
The present invention leverages spatial relationships to provide a systematic means to recognize text and/or graphics. This allows augmentation of a sketched shape with its symbolic meaning, enabling numerous features including smart editing, beautification, and interactive simulation of visual languages. The spatial recognition method obtains a search-based optimization over a large space of possible groupings from simultaneously grouped and recognized sketched shapes. The optimization utilizes a classifier that assigns a class label to a collection of strokes. The overall grouping optimization assumes the properties of the classifier so that if the classifier is scale and rotation invariant the optimization will be as well. Instances of the present invention employ a variant of AdaBoost to facilitate in recognizing/classifying symbols. Instances of the present invention employ dynamic programming and/or A-star search to perform optimization. The present invention applies to both hand-sketched shapes and printed handwritten text, and even heterogeneous mixtures of the two.
摘要:
A computer-implemented word processing system comprises an interface component that receives a features vector associated with an electronic document. An analysis component communicatively coupled to the interface component analyzes the features vector and determines a viewing mode in which to display the electronic document. In accordance with one aspect of the subject invention, the viewing mode can be one of a conventional viewing mode and a viewing mode associated with enhanced readability.
摘要:
Dynamic inference is leveraged to provide online sequence data labeling. This provides real-time alternatives to current methods of inference for sequence data. Instances estimate an amount of uncertainty in a prediction of labels of sequence data and then dynamically predict a label when an uncertainty in the prediction is deemed acceptable. The techniques utilized to determine when the label can be generated are tunable and can be personalized for a given user and/or a system. Employed decoding techniques can be dynamically adjusted to tradeoff system resources for accuracy. This allows for fine tuning of a system based on available system resources. Instances also allow for online inference because the inference does not require knowledge of a complete set of sequence data.
摘要:
Image recognition is utilized to facilitate in scoring parse trees for two-dimensional recognition tasks. Trees and subtrees are rendered as images and then utilized to determine parsing scores. Other instances of the subject invention can incorporate additional features such as stroke curvature and/or nearby white space as rendered images as well. Geometric constraints can also be employed to increase performance of a parsing process, substantially improving parsing speed, some even resolvable in polynomial time. Additional performance enhancements can be achieved in yet other instances of the subject invention by employing constellations of integral images and/or integral images of document features.
摘要:
A two-dimensional representation of a document is leveraged to extract a hierarchical structure that facilitates recognition of the document. The visual structure is grammatically parsed utilizing two-dimensional adaptations of statistical parsing algorithms. This allows recognition of layout structures (e.g., columns, authors, titles, footnotes, etc.) and the like such that structural components of the document can be accurately interpreted. Additional techniques can also be employed to facilitate document layout recognition. For example, grammatical parsing techniques that utilize machine learning, parse scoring based on image representations, boosting techniques, and/or “fast features” and the like can be employed to facilitate in document recognition.
摘要:
Grammatical parsing is utilized to parse structured layouts that are modeled as grammars. This type of parsing provides an optimal parse tree for the structured layout based on a grammatical cost function associated with a global search. Machine learning techniques facilitate in discriminatively selecting features and setting parameters in the grammatical parsing process. In one instance, labeled examples are parsed and a chart is generated. The chart is then converted into a subsequent set of labeled learning examples. Classifiers are then trained utilizing conventional machine learning and the subsequent example set. The classifiers are then employed to facilitate scoring of succedent sub-parses. A global reference grammar can also be established to facilitate in completing varying tasks without requiring additional grammar learning, substantially increasing the efficiency of the structured layout analysis techniques.
摘要:
A discriminative grammar framework utilizing a machine learning algorithm is employed to facilitate in learning scoring functions for parsing of unstructured information. The framework includes a discriminative context free grammar that is trained based on features of an example input. The flexibility of the framework allows information features and/or features output by arbitrary processes to be utilized as the example input as well. Myopic inside scoring is circumvented in the parsing process because contextual information is utilized to facilitate scoring function training.
摘要:
Images are classified as photos (e.g., natural photographs) or graphics (e.g., cartoons, synthetically generated images), such that when searched (online) with a filter, an image database returns images corresponding to the filter criteria (e.g., either photos or graphics will be returned). A set of image statistics pertaining to various visual cues (e.g., color, texture, shape) are identified in classifying the images. These image statistics, combined with pre-tagged image metadata defining an image as either a graphic or a photo, may be used to train a boosting decision tree. The trained boosting decision tree may be used to classify additional images as graphics or photos based on image statistics determined for the additional images.
摘要:
A “Classifier Trainer” trains a combination classifier for detecting specific objects in signals (e.g., faces in images, words in speech, patterns in signals, etc.). In one embodiment “multiple instance pruning” (MIP) is introduced for training weak classifiers or “features” of the combination classifier. Specifically, a trained combination classifier and associated final threshold for setting false positive/negative operating points are combined with learned intermediate rejection thresholds to construct the combination classifier. Rejection thresholds are learned using a pruning process which ensures that objects detected by the original combination classifier are also detected by the combination classifier, thereby guaranteeing the same detection rate on the training set after pruning. The only parameter required throughout training is a target detection rate for the final cascade system. In additional embodiments, combination classifiers are trained using various combinations of weight trimming, bootstrapping, and a weak classifier termed a “fat stump” classifier.
摘要:
A device for monitoring movement of an object is provided. A first module is configured to secure to the object. A second module, capable of electrically connecting to the first module, includes at least a rechargeable battery and a memory capable of storing a history of movement data. A third module, capable of electrically connecting with the second module, includes a data modem capable of connecting to a remote station, and a battery charger. When the second module is connected to the first module, the memory periodically records available location data representing a position of the device at the time of recording. When the second module is connected to the third module, the memory downloads through the data modem and the battery charger charges the battery.