CONTROLLING A COMPUTING-BASED DEVICE USING GESTURES
    1.
    发明申请
    CONTROLLING A COMPUTING-BASED DEVICE USING GESTURES 审中-公开
    使用GEST控制基于计算机的设备

    公开(公告)号:US20150248167A1

    公开(公告)日:2015-09-03

    申请号:US14242649

    申请日:2014-04-01

    Abstract: Methods and systems for controlling a computing-based device based on gestures made within a predetermined range of a camera wherein the predetermined range is a subset of the field of view of the camera. Any gestures made outside of the predetermined range are ignored and do not cause the computing-based device to perform any action. In some examples, the gestures are used to control a drawing canvas that is implemented in a video conference session. In these examples, a single camera may be used to generate an image of a video conference user which is used to detect gestures in the predetermined range and provide other parties to the video conference session a visual image of the user.

    Abstract translation: 用于基于在相机的预定范围内进行的手势来控制基于计算的设备的方法和系统,其中所述预定范围是所述相机视场的子集。 超出预定范围的任何手势都将被忽略,不会导致基于计算的设备执行任何操作。 在一些示例中,手势用于控制在视频会议会话中实现的绘图画布。 在这些示例中,可以使用单个相机来生成视频会议用户的图像,该图像用于检测预定范围内的手势,并向视频会议会话的其他方提供用户的可视图像。

    DEPTH SENSING USING AN RGB CAMERA
    2.
    发明申请
    DEPTH SENSING USING AN RGB CAMERA 有权
    使用RGB摄像机进行深度感测

    公开(公告)号:US20150248765A1

    公开(公告)日:2015-09-03

    申请号:US14193079

    申请日:2014-02-28

    Abstract: A method of sensing depth using an RGB camera. In an example method, a color image of a scene is received from an RGB camera. The color image is applied to a trained machine learning component which uses features of the image elements to assign all or some of the image elements a depth value which represents the distance between the surface depicted by the image element and the RGB camera. In various examples, the machine learning component comprises one or more entangled geodesic random decision forests.

    Abstract translation: 使用RGB相机感测深度的方法。 在示例方法中,从RGB相机接收场景的彩色图像。 将彩色图像应用于训练有素的机器学习部件,其使用图像元素的特征来分配全部或部分图像元素,该深度值表示由图像元素和RGB相机所描绘的表面之间的距离。 在各种示例中,机器学习部件包括一个或多个缠结测地线随机决策树。

Patent Agency Ranking