Abstract:
A user query may be evaluated to provide a result set. In case the results do not reflect the user's intent, the device may provide recourse options for adjusting the query in a manner that yields more desirable results, e.g., a suggestion at the top of the result set for a different spelling, or recommendations at the end of the results set for additional query techniques that may yield more accurate results. However, such presentation of recourse options may clutter the user interface and/or go unnoticed by the user. Instead, an adjusted query may be identified with an interpreted probability of reflecting the intent of the query. An adjustment option describing the adjusted query may be inserted into the result set, between a higher-probability first result and a lower-probability second result. Selection of the adjustment option may cause the adjusted query to be evaluated on behalf of the user.
Abstract:
The technology described herein provides an efficient mechanism for generating image tags. Image data from a plurality of sources may be analyzed to identify relevant text items from the aggregated data. The relevant text items may be keywords describing a subject of an image, an entity of an image, a location of an image, or the like. From the aggregated image data, one or more image tags may be generated and stored as an offline dataset with an image identifier. Upon detecting a prompt such as a user issuing a search query for an image, the image identifier is used to perform a look up of the image and associated image tags to be provided.
Abstract:
The technology described herein provides an efficient mechanism for quickly analyzing huge amounts of media content to find media content (hereafter “content” or “media content”) that is relevant to a user. The technology analyzes features of a curator to classify curators by interest and/or find curators with similar content recommendations. The curator data can be used to make curator recommendations to users based on the user's interests. The technology described herein collects curator data from multiple content sites and analyzes the data to identify curators that recommend similar content on different content sites.
Abstract:
The technology described herein provides an efficient mechanism for generating image tags. Image data from a plurality of sources may be analyzed to identify relevant text items from the aggregated data. The relevant text items may be keywords describing a subject of an image, an entity of an image, a location of an image, or the like. From the aggregated image data, one or more image tags may be generated and stored as an offline dataset with an image identifier. Upon detecting a prompt such as a user issuing a search query for an image, the image identifier is used to perform a look up of the image and associated image tags to be provided.
Abstract:
A user query may be evaluated to provide a result set. In case the results do not reflect the user's intent, the device may provide recourse options for adjusting the query in a manner that yields more desirable results, e.g., a suggestion at the top of the result set for a different spelling, or recommendations at the end of the results set for additional query techniques that may yield more accurate results. However, such presentation of recourse options may clutter the user interface and/or go unnoticed by the user. Instead, an adjusted query may be identified with an interpreted probability of reflecting the intent of the query. An adjustment option describing the adjusted query may be inserted into the result set, between a higher-probability first result and a lower-probability second result. Selection of the adjustment option may cause the adjusted query to be evaluated on behalf of the user.