NEURAL ADAPTER FOR CLASSICAL MACHINE LEARNING (ML) MODELS

    公开(公告)号:US20210065007A1

    公开(公告)日:2021-03-04

    申请号:US16551615

    申请日:2019-08-26

    摘要: Solutions for adapting machine learning (ML) models to neural networks (NNs) include receiving an ML pipeline comprising a plurality of operators; determining operator dependencies within the ML pipeline; determining recognized operators; for each of at least two recognized operators, selecting a corresponding NN module from a translation dictionary; and wiring the selected NN modules in accordance with the operator dependencies to generate a translated NN. Some examples determine a starting operator for translation, which is the earliest recognized operator having parameters. Some examples connect inputs of the translated NN to upstream operators of the ML pipeline that had not been translated. Some examples further tune the translated NN using backpropagation. Some examples determine whether an operator is trainable or non-trainable and flag related parameters accordingly for later training. Some examples determine whether an operator has multiple corresponding NN modules within the translation dictionary and make an optimized selection.

    NEURAL ADAPTER FOR CLASSICAL MACHINE LEARNING (ML) MODELS

    公开(公告)号:US20240232634A1

    公开(公告)日:2024-07-11

    申请号:US18423254

    申请日:2024-01-25

    摘要: Solutions for adapting machine learning (ML) models to neural networks (NNs) include receiving an ML pipeline comprising a plurality of operators; determining operator dependencies within the ML pipeline; determining recognized operators; for each of at least two recognized operators, selecting a corresponding NN module from a translation dictionary; and wiring the selected NN modules in accordance with the operator dependencies to generate a translated NN. Some examples determine a starting operator for translation, which is the earliest recognized operator having parameters. Some examples connect inputs of the translated NN to upstream operators of the ML pipeline that had not been translated. Some examples further tune the translated NN using backpropagation. Some examples determine whether an operator is trainable or non-trainable and flag related parameters accordingly for later training. Some examples determine whether an operator has multiple corresponding NN modules within the translation dictionary and make an optimized selection.