摘要:
Audio/video (A/V) content is analyzed using speech and language analysis components. Metadata is automatically generated based upon the analysis. The metadata is used in generating user interface interaction components which allow a user to view subject matter in various segments of the A/V content and to interact with the A/V content based on the automatically generated metadata.
摘要:
Audio/video (A/V) content is analyzed using speech and language analysis components. Metadata is automatically generated based upon the analysis. The metadata is used in generating user interface interaction components which allow a user to view subject matter in various segments of the A/V content and to interact with the A/V content based on the automatically generated metadata.
摘要:
A method and apparatus are provided for training and using a hidden conditional random field model for speech recognition and phonetic classification. The hidden conditional random field model uses feature functions, at least one of which is based on a hidden state in a phonetic unit. Values for the feature functions are determined from a segment of speech, and these values are used to identify a phonetic unit for the segment of speech.
摘要:
A method and apparatus are provided for adapting a language model. The method and apparatus provide supervised class-based adaptation of the language model utilizing in-domain semantic information.
摘要:
A method of modeling a speech recognition system includes decoding a speech signal produced from a training text to produce a sequence of predicted speech units. The training text comprises a sequence of actual speech units that is used with the sequence of predicted speech units to form a confusion model. In further embodiments, the confusion model is used to decode a text to identify an error rate that would be expected if the speech recognition system decoded speech based on the text.
摘要:
A method and apparatus are provided for training and using a hidden conditional random field model for speech recognition and phonetic classification. The hidden conditional random field model uses features, at least one of which is based on a hidden state in a phonetic unit. Values for the features are determined from a segment of speech, and these values are used to identify a phonetic unit for the segment of speech.
摘要:
In a method of entering text into a device a first character input is provided that is indicative of a first character of a text entry. Next, a vocalization of the text entry is captured. A probable word candidate is then identified for a first word of the vocalization based upon the first character input and an analysis of the vocalization. Finally, the probable word candidate is displayed for a user.
摘要:
A method of modeling a speech recognition system includes decoding a speech signal produced from a training text to produce a sequence of predicted speech units. The training text comprises a sequence of actual speech units that is used with the sequence of predicted speech units to form a confusion model. In further embodiments, the confusion model is used to decode a text to identify an error rate that would be expected if the speech recognition system decoded speech based on the text.
摘要:
In accordance with one embodiment of the present invention, unanticipated semantic intents are discovered in audio data in an unsupervised manner. For instance, the audio acoustics are clustered based on semantic intent and representative acoustics are chosen for each cluster. The human then need only listen to a small number of representative acoustics for each cluster (and possibly only one per cluster) in order to identify the unforeseen semantic intents.
摘要:
Methods are disclosed for estimating language models such that the conditional likelihood of a class given a word string, which is very well correlated with classification accuracy, is maximized. The methods comprise tuning statistical language model parameters jointly for all classes such that a classifier discriminates between the correct class and the incorrect ones for a given training sentence or utterance. Specific embodiments of the present invention pertain to implementation of the rational function growth transform in the context of a discriminative training technique for n-gram classifiers.