Method for manufacturing Ni-based alloy member

    公开(公告)号:US11566313B2

    公开(公告)日:2023-01-31

    申请号:US16058497

    申请日:2018-08-08

    摘要: Provided is a method for manufacturing an Ni-based alloy member in which the equilibrium amount of γ′ phase precipitation at 700° C. is from 30 to 70 volume %. The method includes the steps of preparing an Ni-based alloy powder having a predetermined chemical composition; forming a precursor body wherein an average grain diameter of the γ phase grains is 50 μm or less, by using the Ni-based alloy powder; and heating the precursor body to a temperature at least the γ′ phase solvus temperature and subsequently slow-cooling the heated precursor body from the temperature to a temperature at least 100° C. lower than the γ′ phase solvus temperature at a cooling rate of 100° C./h or lower. There is obtained a softened body in that the γ′ phase particles of at least 20 volume % precipitate between/among the γ phase grains having an average grain diameter of 50 μm or less.

    Co-BASED ALLOY MATERIAL, Co-BASED ALLOY PRODUCT, AND METHOD FOR MANUFACTURING SAID PRODUCT

    公开(公告)号:US20230070692A1

    公开(公告)日:2023-03-09

    申请号:US17898986

    申请日:2022-08-30

    摘要: There is provided a Co-based alloy material, having a chemical composition including: Al of 0.1 to 10 mass %; W of 3 to 45 mass %, the total content of Al and W being 50 mass % or less; O of 0.007 to 0.05 mass %; and the balance being Co and impurities, wherein in γ phase crystal grains as a matrix phase of the Co-based alloy material, segregation cells within an average size of 0.15 to 1.5 μm are formed, wherein in the segregation cells, γ′ phase grains within a size of 0.01 to 0.5 μm including Co, Al and W are dispersively precipitated, and wherein on boundary regions of the segregation cells and grain boundaries of the γ phase crystal grains, μ phase grains within a size of 0.005 to 2 μm including Co and W are dispersively precipitated.

    Cobalt based alloy product
    8.
    发明授权

    公开(公告)号:US11499208B2

    公开(公告)日:2022-11-15

    申请号:US16620901

    申请日:2019-03-07

    IPC分类号: C22C19/07 C22C1/04 B22F9/08

    摘要: There is provided a cobalt-based alloy product comprising: in mass %, 0.08-0.25% C; 0.1% or less B; 10-30% Cr; 5% or less Fe and 30% or less Ni, the total amount of Fe and Ni being 30% or less; W and/or Mo, the total amount of W and Mo being 5-12%; 0.5% or less Si; 0.5% or less Mn; 0.003-0.04% N; 0.5 to 2 mass % of an M component being a transition metal other than W and Mo and having an atomic radius of more than 130 pm; and the balance being Co and impurities. The impurities include 0.5% or less Al and 0.04% or less O. The product is a polycrystalline body of matrix phase crystal grains. In the matrix phase crystal grains, segregation cells with an average size of 0.13-2 μm are formed, in which the M component is segregated in boundary regions of the segregation cells.

    Heat exchanger
    9.
    发明授权

    公开(公告)号:US11427893B2

    公开(公告)日:2022-08-30

    申请号:US16618971

    申请日:2019-03-07

    摘要: A Co-based alloy heat exchanger comprises: in mass %, 0.08-0.25% C; 0.1% or less B; 10-30% Cr; 5% or less Fe and 30% or less Ni, the total amount of Fe and Ni being 30% or less; W and/or Mo, the total amount of W and Mo being 5-12%; Ti, Zr, Nb and Ta, the total amount of Ti, Zr, Nb and Ta being 0.5-2%; 0.5% or less Si; 0.5% or less Mn; 0.003-0.04% N; and the balance being Co and impurities. The impurities include 0.5% or less Al, and 0.04% or less O. The heat exchanger is a polycrystalline body of matrix crystal grains with an average size of 5-100 μm. In the matrix crystal grains, segregation cells with an average size of 0.13-2 μm are formed, wherein components constituting an MC type carbide comprising Ti, Zr, Nb and/or Ta are segregated in boundary regions of the segregation cells.