摘要:
The present invention relates to a method for sending reserved sub-carriers to a UE for the purpose of reducing peak to average power ratio (PAPR) of the transmitted signal to ensure sufficient quality of the modulated signal to achieve high data rate, including the steps of sending the information related to dynamic activation and deactivation of reserved sub-carriers on a common channel, which is readable for all UEs in idle and in connected mode; dynamically activating the transmission of the reserved sub-carriers in a cell when high modulation quality is to be maintained; dynamically deactivating the transmission of the reserved sub-carriers in a cell when high modulation quality is not required. The invention furthermore relates to a radio base station and a UE relating to said method.
摘要:
The present invention relates to a method for sending reserved sub-carriers to a UE for the purpose of reducing peak to average power ratio (PAPR) of the transmitted signal to ensure sufficient quality of the modulated signal to achieve high data rate, including the steps of sending the information related to dynamic activation and deactivation of reserved sub-carriers on a common channel, which is readable for all UEs in idle and in connected mode; dynamically activating the transmission of the reserved sub-carriers in a cell when high modulation quality is to be maintained; dynamically deactivating the transmission of the reserved sub-carriers in a cell when high modulation quality is not required. The invention furthermore relates to a radio base station and a UE relating to said method.
摘要:
A MIMO-capable base station allocates a maximum transmission power budget to each of its antennas. For serving each of one or more MIMO and non-MIMO users, one or more carriers are allocated. For each carrier, information about an amount of allocated MIMO and non-MIMO user resources associated with the carrier is used to derive coefficients. Each coefficient corresponds to a unique one of the antennas, and represents a proportion of a maximum power budget for the carrier. For each carrier, the coefficients and the maximum transmission power budget for the carrier are used to derive a maximum transmission power budget for each of the antennas. For each antenna, a total maximum transmission power budget for the antenna is derived by combining the derived maximum transmission power budgets of the carriers transmitted on the antenna. The total maximum power budget of the antenna should not exceed a limit for the antenna.
摘要:
A MIMO-capable base station allocates a maximum transmission power budget to each of its antennas. For serving each of one or more MIMO and non-MIMO users, one or more carriers are allocated. For each carrier, information about an amount of allocated MIMO and non-MIMO user resources associated with the carrier is used to derive coefficients. Each coefficient corresponds to a unique one of the antennas, and represents a proportion of a maximum power budget for the carrier. For each carrier, the coefficients and the maximum transmission power budget for the carrier are used to derive a maximum transmission power budget for each of the antennas. For each antenna, a total maximum transmission power budget for the antenna is derived by combining the derived maximum transmission power budgets of the carriers transmitted on the antenna. The total maximum power budget of the antenna should not exceed a limit for the antenna.
摘要:
A radio base station (20) has an internal interface (26) connecting a radio equipment (RE) (24) and a radio equipment controller (REC) (22). The radio base station performs a pre-start-up procedure or method for the internal (26). The pre-start-up procedure is performed preparatory to and/or in conjunction with a start-up procedure for the internal interface. As on e of its aspects, the pre-start-up procedure involves storing one or more previously proven combinations of line bit rate and protocol as stored combination(s) for use on the internal interface. Prior to synchronization of the internal interface, the stored combination(s) are retrieved and included in a temporary available set of combinations of line bit rate and protocol. Thereafter the start-up procedure for the internal interface is initiated for the purpose of determining efficacy of the temporary available set. Should synchronization of the physical layer by the start-up procedure succeed, the pre-start-up procedure uses a valid combination of line bit rate and protocol in the available set for negotiating between the radio equipment controller (REC) and the radio equipment (RE). Should the start-up procedure fail, the pre-start-up procedure removes a failed combination of line bit rate and protocol from the set.
摘要:
An interface, apparatus, and method are described for communication between a radio equipment control (REC) node and a radio equipment (RE) node in a radio base station that tranceives information over radio interface using multiple antenna carriers. The REC node is separate from and coupled to the RE node by a transmission link. Both control information and user information are generated for transmission over the transmission link from one of the REC node and the RE node to the other. Many advantageous interface features are described.
摘要:
A radio base station (20) has an internal interface (26) connecting a radio equipment (RE) (24) and a radio equipment controller (REC) (22). The radio base station performs a pre-start-up procedure or method for the internal interface (26). The pre-start-up procedure is preformed preparatory to and/or in conjunction with a start-up procedure for the internal interface. As one of its aspects, the pre-start-up procedure involves storing one or more previously proven combinations of line bit rate and protocol as stored combination(s) for use on the internal interface. Prior to synchronization of the internal interface, the stored combination(s) are retrieved and included in a temporary available set of combinations of line bit rate and protocol. Thereafter the start-up procedure for the internal interface is initiated for the purpose of determining efficacy of the temporary available set. Should synchronization of the physical layer by the start-up procedure succeed, the pre-start-up procedure uses a valid combination of line bit rate and protocol in the available set for negotiating between the radio equipment controller (REC) and the radio equipment (RE). Should the start-up procedure fail, the pre-start-up procedure removes a failed combination of line bit rate and protocol from the set. In another of its aspects, the pre-start-up procedure classifies the temporary available set into plural subsets, each subset of the temporary available set containing combinations of line bit rate and protocol having a same line bit rate. The pre-start-up procedure separately initiates the start-up procedure for the internal interface for each subset. In another of its aspects, the pre-start-up procedure classifies the stored combinations as: (1) a best last time combination of line bit rate and protocol which was involved in a last successful execution of the start-up procedure; and (2) a union all combinations of line bit rate and protocol for which the synchronization of the physical layer has previously been successful during the start-up procedure. Capitalizing upon this classification, the pre-start-up procedure can use the best last time combination as the temporary available set for initiating the start-up procedure for the internal interface. Then, if the start-up procedure fails, the pre-start-up procedure can resort to using the union of all combinations as the temporary available set for initiating the start-up procedure for the internal interface.
摘要:
An interface, apparatus, and method are described for communication between a radio equipment control (REC) node and a radio equipment (RE) node in a radio base station that tranceives information over radio interface using multiple antenna carriers. The REC node is separate from and coupled to the RE node by a transmission link. Both control information and user information are generated for transmission over the transmission link from one of the REC node and the RE node to the other. Many advantageous interface features are described.
摘要:
The present invention relates to uplink testing of a base station of a mobile communications system. Message blocks are sent each with a predefined maximum number of retransmissions from a mobile station emulator or simulator for each message block of the test without requiring one or more retransmission requests from the base station under test. The invention is well suited for a cellular mobile radio communications system, particularly a Universal Mobile Telecommunications System, UMTS.