APPARATUS AND METHOD FOR MANAGING DATA STREAM DISTRIBUTED PARALLEL PROCESSING SERVICE
    1.
    发明申请
    APPARATUS AND METHOD FOR MANAGING DATA STREAM DISTRIBUTED PARALLEL PROCESSING SERVICE 有权
    用于管理数据流分布式并行处理服务的装置和方法

    公开(公告)号:US20130219405A1

    公开(公告)日:2013-08-22

    申请号:US13585252

    申请日:2012-08-14

    CPC classification number: G06F9/5038 G06F9/505

    Abstract: Disclosed herein are an apparatus and method for managing a data stream distributed parallel processing service. The apparatus includes a service management unit, a Quality of Service (QoS) monitoring unit, and a scheduling unit. The service management unit registers a plurality of tasks constituting the data stream distributed parallel processing service. The QoS monitoring unit gathers information about the load of the plurality of tasks and information about the load of a plurality of nodes constituting a cluster which provides the data stream distributed parallel processing service. The scheduling unit arranges the plurality of tasks by distributing the plurality of tasks among the plurality of nodes based on the information about the load of the plurality of tasks and the information about the load of the plurality of nodes.

    Abstract translation: 这里公开了一种用于管理分布式并行处理服务的数据流的装置和方法。 该装置包括服务管理单元,服务质量(QoS)监视单元和调度单元。 服务管理单元登记构成数据流分散并行处理服务的多个任务。 QoS监视单元收集关于多个任务的负载的信息和关于构成提供数据流分布式并行处理服务的集群的多个节点的负载的信息。 调度单元基于关于多个任务的负载的信息和关于多个节点的负载的信息,在多个节点之间分配多个任务来配置多个任务。

    SYSTEM AND METHOD FOR PROCESSING CONTINUOUS INTEGRATED QUERIES ON BOTH DATA STREAM AND STORED DATA USING USER-DEFINED SHARE TRIGGER
    2.
    发明申请
    SYSTEM AND METHOD FOR PROCESSING CONTINUOUS INTEGRATED QUERIES ON BOTH DATA STREAM AND STORED DATA USING USER-DEFINED SHARE TRIGGER 失效
    使用用户定义的分享触发器处理两个数据流和存储数据的连续集成查询的系统和方法

    公开(公告)号:US20080046401A1

    公开(公告)日:2008-02-21

    申请号:US11838599

    申请日:2007-08-14

    CPC classification number: G06F17/30516

    Abstract: Provided are a system and method for processing continuous integrated queries on both data stream and stored data using user-defined shared trigger. The system includes a data stream manager for managing data stream inputted from outside; a continuous integrated queries manager for managing the continuous integrated queries inputted from an external application; a trigger manager for managing the user-defined shared trigger inputted from the external application and registering the user-defined shared trigger in an external database; a trigger result manager for forming and managing a trigger result set from a performance result of the user-defined shared trigger registered in the cooperation database; and a continuous integrated queries performer for processing the continuous integrated queries referring to the transmitted data stream and trigger result set.

    Abstract translation: 提供了一种用于使用用户定义的共享触发来处理数据流和存储数据的连续集成查询的系统和方法。 该系统包括用于管理从外部输入的数据流的数据流管理器; 用于管理从外部应用输入的连续集成查询的连续集成查询管理器; 用于管理从外部应用输入的用户定义的共享触发并将用户定义的共享触发记录在外部数据库中的触发管理器; 触发结果管理器,用于从登记在协作数据库中的用户定义的共享触发的执行结果形成和管理触发结果集; 以及连续的综合查询执行器,用于处理连续的综合查询,参考发送的数据流和触发结果集。

    INCREMENTAL MAPREDUCE-BASED DISTRIBUTED PARALLEL PROCESSING SYSTEM AND METHOD FOR PROCESSING STREAM DATA
    3.
    发明申请
    INCREMENTAL MAPREDUCE-BASED DISTRIBUTED PARALLEL PROCESSING SYSTEM AND METHOD FOR PROCESSING STREAM DATA 审中-公开
    基于MAPREDUCE的分布式并行处理系统和处理流数据的方法

    公开(公告)号:US20110154339A1

    公开(公告)日:2011-06-23

    申请号:US12968647

    申请日:2010-12-15

    CPC classification number: G06F9/5027 G06F15/17393 G06F2209/5017

    Abstract: Disclosed herein is a system for processing large-capacity data in a distributed parallel processing manner based on MapReduce using a plurality of computing nodes. The distributed parallel processing system is configured to provide an incremental MapReduce-based distributed parallel processing function for large-capacity stream data which is being continuously collected even during the performance of the distributed parallel processing, as well as for large-capacity stored data which has been previously collected.

    Abstract translation: 本文公开了一种基于使用多个计算节点的MapReduce以分布式并行处理方式处理大容量数据的系统。 分布式并行处理系统被配置为为大容量流数据提供增量的基于MapReduce的分布式并行处理功能,即使在分布式并行处理的执行期间也连续收集,并且对于大容量存储的数据 以前收集。

Patent Agency Ranking