Abstract:
A method for producing the anode material of a lithium ion battery from flexible graphite powder, comprising (A) providing a dry flexible graphite, and pulverizing the dry flexible graphite by a pulverizing step, and filtering the dry flexible graphite with a sieve screen to obtain a uniform flexible graphite powder, (B) performing a ball-grinding step for the uniform flexible graphite powder by mixing with a solvent to obtain a liquid containing flexible graphite; (C) coating the liquid containing flexible graphite on a metal foil, and performing a rolling step to obtain an anode material. Then, the anode material is processed in its shape and is formed into an anode electrode plate. Thereafter, the anode electrode plate is stacked with a lower cover of the battery, a separating paper, a cathode electrode plate, a spring sheet and an upper cover of the battery to assemble the lithium ion battery.
Abstract:
Disclosed is a method of producing thin graphene nanoplatelets, and the method includes the steps of providing a carbon precursor and a filling material, using the carbon precursor as a binding agent to mix with the filling material thoroughly, producing a composite material through a forming process, performing a heat treatment of the composite material under an atmosphere and at different temperatures to improve the electrical conductivity and adjust to an appropriate binding strength, perform a carbon conversion of the composite material with a good graphite cyrstallinity to produce a layered graphite structure of a thin graphene nanoplatelet precursor, while obtaining high quality graphene by performing an electrochemical process of the thin graphene nanoplatelet precursor, so as to achieve the mass production of the high quality thin graphene nanoplateletes with a low cost.