Abstract:
The prediction function creation device according to the present invention for creating a prediction function to derive an objective variable by using a set of samples that include explanatory variables and an objective variable, the device includes: a clustering unit that clusters the respective samples by giving labels, and assigns weights to each label in accordance with patterns of missing values for the explanatory variables in labeled samples; a child model creation unit that makes portions of the training data partial training data on the basis of the weights, and determines an explanatory variable that constitutes the prediction function on the basis of patterns of missing values for the explanatory variables in the samples; and a mixture model creation unit that creates the prediction function with respect to each pattern of missing values by using the explanatory variable and the determined partial training data.
Abstract:
A feature design unit 81 designs, from relational data, a feature as a variable likely to affect an objective variable. A feature generating unit 82 generates the designed feature, from the relational data. A learning unit 83 learns a prediction model, on the basis of the generated feature.
Abstract:
A table storage unit 81 stores a first table including an objective variable and a second table different in granularity from the first table. A descriptor creation unit 82 creates a feature descriptor for generating a feature which is a variable that can influence the objective variable, from the first table and the second table. The descriptor creation unit 82 creates a plurality of feature descriptors, each by generating a combination of a mapping condition element indicating a mapping condition for rows in the first table and the second table and a reduction method element indicating a reduction method for reducing, for each objective variable, data of each column included in the second table.
Abstract:
An enumeration plan generation unit 81 generates a set of logical formula structures each representing a way of combining logical formula expressions each representing a combination of features by use of the features of learning data items and the maximum number of features to be combined, and generates partial logical formula structures by dividing a logical formula expression included in each of the generated logical formula structures into two, and generates an enumeration plan in which the partial logical formula structures are linked to the logical formula structure from which the partial logical formula structures are divided. The feature generation unit 82 generates a new feature that is a combination of the features corresponding to the generated partial logical formula structures. Furthermore, the enumeration plan generation unit 81 divides the logical formula structure into two such that the numbers of the features included in the two partial logical formula structures generated from each of the logical formula structures are substantially equal.
Abstract:
This invention provides a water-leakage state estimation system configured to estimate a state of a water leakage in a specific area of a water distribution network. A learning unit is configured to: receive labeled data, which is labeled so as to separate past flow rate data into abnormal values and normal values, and past environment state condition data; build a prediction model for predicting the normal values in the labeled data through learning; and determine a score parameter defining a length of a period involving data to be verified through learning as well. A water-leakage estimation unit is configured to: compare predicted flow rate data obtained by supplying current environment condition data into the prediction model and current flow rate data to produce error values; and calculate an average value of the error values in the period of a window width defined by the score parameter to estimate a water-leakage score representing a state of the water-leakage in the specific area.
Abstract:
A feature-converting device that provides good features quickly. The device includes first and second feature construction units and first and second feature selection units. The first feature construction unit receives one or more first features and constructs one or more second features that represent the results of applying a unary function to the respective first features. The first feature selection unit computes relevance between the first and second features and a target variable that includes elements associated with elements included in the first features and selects one or more third features that represent highly relevant features. The second feature construction unit constructs one or more fourth features that represent the results of applying a multi-operand function to the third features. The second feature selection unit computes the relevance between the third and fourth features and the target variable and selects at least one fifth feature that represents highly relevant features.
Abstract:
A prediction data input unit 91 inputs prediction data that is one or more explanatory variables that are information likely to affect future sales. An exposure pattern generation unit 92 generates an exposure pattern which is an explanatory variable indicating the content of a commercial message scheduled to be performed during a period from predicted time to future prediction target time. A component determination unit 93 determines the component used for predicting the sales, on the basis of a hierarchical latent structure that is a structure in which latent variables are represented by a tree structure and components representing probability models are located at nodes of a lowest level of the tree structure, gating functions for determining a branch direction in the nodes of the hierarchical latent structure, and the prediction data and the exposure pattern. A sales prediction unit 94 predicts the sales on the basis of the component determined by the component determination unit 93 and of the prediction data and the exposure pattern.