Abstract:
This invention provides a water-leakage state estimation system configured to estimate a state of a water leakage in a specific area of a water distribution network. A learning unit is configured to: receive labeled data, which is labeled so as to separate past flow rate data into abnormal values and normal values, and past environment state condition data; build a prediction model for predicting the normal values in the labeled data through learning; and determine a score parameter defining a length of a period involving data to be verified through learning as well. A water-leakage estimation unit is configured to: compare predicted flow rate data obtained by supplying current environment condition data into the prediction model and current flow rate data to produce error values; and calculate an average value of the error values in the period of a window width defined by the score parameter to estimate a water-leakage score representing a state of the water-leakage in the specific area.
Abstract:
A hierarchical latent structure setting unit 81 sets a hierarchical latent structure that is a structure in which latent variables are represented by a tree structure and components representing probability models are located at nodes of a lowest level of the tree structure. A variational probability computation unit 82 computes a variational probability of a path latent variable that is a latent variable included in a path linking a root node to a target node in the hierarchical latent structure. A component optimization unit 83 optimizes each of the components for the computed variational probability. A gating function optimization unit 84 optimizes a gating function model that is a model for determining a branch direction according to the multivariate data in a node of the hierarchical latent structure, on the basis of the variational probability of the latent variable in the node.
Abstract:
A distribution system 100 includes a data management apparatus 10 and a plurality of calculators 20 that execute machine learning. The data management apparatus 10 includes a data acquisition unit 11 that acquires information regarding training data held in a memory 21 of each of the calculators 20, from the calculators 20, and a data rearrangement unit 12 that determines training data that is to be held in the memory 21 of each of the calculators 20, based on characteristics of the machine learning processes that are executed by the calculators 20, and the information acquired from the calculators.
Abstract:
A learning unit 81 generates a plurality of sample groups from samples to be used for learning, and generates a plurality of prediction models while inhibiting overlapping of a sample group to be used for learning among the generated sample groups. An optimization unit 82 generates an objective function based on an explained variable predicted by the prediction model and based on a constraint condition for optimization, and optimizes a generated objective function. An evaluation unit 83 evaluates an optimization result by using a sample group that has not been used in learning of a prediction model used for generating an objective function targeted for the optimization.
Abstract:
An apparatus that extracts an explanatory variable used as a condition from a classification model classified by the condition for selecting a component used for prediction, displays the explanatory variable in association with any of dimensional axes of a multi-dimensional space in which a prediction value is displayed, specifies the component that corresponds to a position in the multi-dimensional space specified by each of the explanatory variables associated with the dimensional axis, displays the prediction value calculated based on the specified component, on the same position and displays the multi-dimensional space that corresponds to the position in which the prediction value is displayed, in a mode that corresponds to the component used for calculating the prediction value.
Abstract:
A model estimation device includes: a data input unit; a state number setting unit; an initialization unit which sets initial values of a variational probability of a latent variable, a parameter, and the type of each component; a latent variable variational probability computation unit which computes the variational probability of the latent variable so as to maximize a lower bound of a marginal model posterior probability; a component optimization unit which estimates an optimal type of each component and a parameter thereof so as to maximize the lower bound of the marginal model posterior probability separated for each component of the latent variable model; an optimality determination unit which determines whether or not to continue the maximization of the lower bound of the marginal model posterior probability; and a result output unit which outputs a result.
Abstract:
A model estimation device includes: a data input unit 101; a state number setting unit; an initialization unit; a latent variable variational probability computation unit which computes a variational probability of a latent variable so as to maximize a lower bound of a model posterior probability limited in degree of freedom; a component optimization unit which estimates an optimal type of each component and a parameter thereof so as to maximize the lower bound of the model posterior probability limited in degree of freedom and separated for each component of a latent variable model; a free parameter selection variable computation unit which computes the free parameter selection variable; an optimality determination unit which determines whether or not to continue the maximization of the lower bound of the model posterior probability; and a result output unit.
Abstract:
A memory that stores health checkup data of a person and a label value representing whether or not the person fell under a predetermined health guidance criterion in the subsequent period, and a processor connected with the memory are provided. The processor learns a discriminant model with use of the health checkup data of each person and the label value. The discriminant model, in which health checkup items of the health checkup data are used as explanatory variables, is represented as a polynomial including the explanatory variables and coefficients of the respective explanatory variables, and is used for discriminating whether or not the person falls under the health guidance criterion in the subsequent period. The processor generates, as a selection condition, combinations of the health checkup items as the explanatory variables and values of the coefficients in the discriminant model after learning.
Abstract:
Provided is a feature-value display system which can display a feature value of a node for accurate prediction of a state of the node in a graph structure or a network structure. The feature-value display system 1 displays the feature value of the current node, considering information generated on the basis of attribute information associated with the nodes adjacent to or closer to a current node in the graph structure or the network structure, as the feature value of the current node itself.
Abstract:
A hierarchical latent structure setting unit 81 sets a hierarchical latent structure that is a structure in which latent variables are represented by a tree structure and components representing probability models are located at nodes of a lowest level of the tree structure. A variational probability computation unit 82 computes a variational probability of a path latent variable that is a latent variable included in a path linking a root node to a target node in the hierarchical latent structure. A component optimization unit 83 optimizes each of the components for the computed variational probability. A gating function optimization unit 84 optimizes a gating function model that is a model for determining a branch direction according to the multivariate data in a node of the hierarchical latent structure, based on the variational probability of the latent variable in the node.