Abstract:
A method for free flow fever screening is presented. The method includes capturing a plurality of frames from thermal data streams and visual data streams related to a same scene to define thermal data frames and visual data frames, detecting and tracking a plurality of individuals moving in a free-flow setting within the visual data frames, and generating a tracking identification for each individual of the plurality of individuals present in a field-of-view of the one or more cameras across several frames of the plurality of frames. The method further includes fusing the thermal data frames and the visual data frames, measuring, by a fever-screener, a temperature of each individual of the plurality of individuals within and across the plurality of frames derived from the thermal data streams and the visual data streams, and generating a notification when a temperature of an individual exceeds a predetermined threshold temperature.
Abstract:
Systems and methods are provided for dynamically optimizing microservice placement in a distributed edge and cloud computing environment, including receiving application specifications that include telemetry data collection methods, placement rules, and modes of operation, validating the received application specifications to ensure completeness and correctness, and composing an application graph where vertices represent microservices and edges represent connections between the microservices. Availability of resources specified in the application graph is checked, and the microservices are deployed according to initial placement rules. Telemetry data from the deployed microservices and underlying infrastructure is collected and evaluated against the placement rules, and the placement of microservices is dynamically adjusted responsive to a determination that current microservice placement is suboptimal based on the evaluating of the collected telemetry data.
Abstract:
Systems and methods are provided for dynamically tuning camera parameters in a video analytics system to optimize analytics accuracy. A camera captures a current scene, and optimal camera parameter settings are learned and identified for the current scene using a Reinforcement Learning (RL) engine. The learning includes defining a state within the RL engine as a tuple of two vectors: a first representing current camera parameter values and a second representing measured values of frames of the current scene. Quality of frames is estimated using a quality estimator, and camera parameters are adjusted based on the quality estimator and the RL engine for optimization. Effectiveness of tuning is determined using perceptual Image Quality Assessment (IQA) to quantify a quality measure. Camera parameters are adaptively tuned in real-time based on learned optimal camera parameter settings, state, quality measure, and set of actions, to optimize the analytics accuracy for video analytics tasks.
Abstract:
A computer-implemented method executed by at least one processor for detecting tattoos on a human body is presented. The method includes inputting a plurality of images into a tattoo detector, selecting one or more images of the plurality of images including tattoos, extracting, via a feature extractor, tattoo feature vectors from the tattoos found in the one or more images of the plurality of images including tattoos, applying a deep learning tattoo matching model to determine potential matches between the tattoo feature vectors and preexisting tattoo images stored in a tattoo training database, and generating a similarity score between the tattoo feature vectors and one or more of the preexisting tattoo images stored in the tattoo training database.
Abstract:
Methods and systems for executing an application include extending a container orchestration system application programming interface (API) to handle objects that specify components of an application. An application representation is executed using the extended container orchestration system API, including the instantiation of one or more services that define a data stream path from a sensor to a device.
Abstract:
Methods and systems for face clustering include determining a quality score for each of a set of input images. A first subset of the input images is clustered, having respective quality scores that exceed a predetermined threshold, to form an initial set of clusters. A second subset of the input images is clustered, having respective quality scores below the predetermined threshold. An action is performed responsive to the clustered images after the second subset is added to the initial set of clusters.
Abstract:
A method for free flow fever screening is presented. The method includes capturing a plurality of frames from thermal data streams and visual data streams related to a same scene to define thermal data frames and visual data frames, detecting and tracking a plurality of individuals moving in a free-flow setting within the visual data frames, and generating a tracking identification for each individual of the plurality of individuals present in a field-of-view of the one or more cameras across several frames of the plurality of frames. The method further includes fusing the thermal data frames and the visual data frames, measuring, by a fever-screener, a temperature of each individual of the plurality of individuals within and across the plurality of frames derived from the thermal data streams and the visual data streams, and generating a notification when a temperature of an individual exceeds a predetermined threshold temperature.
Abstract:
A computer-implemented method executed by at least one processor for detecting tattoos on a human body is presented. The method includes inputting a plurality of images into a tattoo detector, selecting one or more images of the plurality of images including tattoos, extracting, via a feature extractor, tattoo feature vectors from the tattoos found in the one or more images of the plurality of images including tattoos, applying a deep learning tattoo matching model to determine potential matches between the tattoo feature vectors and preexisting tattoo images stored in a tattoo training database, and generating a similarity score between the tattoo feature vectors and one or more of the preexisting tattoo images stored in the tattoo training database.
Abstract:
A method is disclosed to manage a multi-processor system with one or more manycore devices, by managing real-time bag-of-tasks applications for a cluster, wherein each task runs on a single server node, and uses the offload programming model, and wherein each task has a deadline and three specific resource requirements: total processing time, a certain number of manycore devices and peak memory on each device; when a new task arrives, querying each node scheduler to determine which node can best accept the task and each node scheduler responds with an estimated completion time and a confidence level, wherein the node schedulers use an urgency-based heuristic to schedule each task and its offloads; responding to an accept/reject query phase, wherein the cluster scheduler send the task requirements to each node and queries if the node can accept the task with an estimated completion time and confidence level; and scheduling tasks and offloads using a aging and urgency-based heuristic, wherein the aging guarantees fairness, and the urgency prioritizes tasks and offloads so that maximal deadlines are met.
Abstract:
Methods are provided. A method includes capturing a snapshot of an offload process being executed by one or more many-core processors. The offload process is in signal communication with a host process being executed by a host processor. At least the offload is in signal communication with a monitoring process. The method further includes terminating the offload process on the one or more many-core processors, by the monitor process responsive to a communication between the monitor process and the offload processing being disrupted. The snapshot includes a respective predetermined minimum set of information required to restore a same state of the process as when the snapshot was taken.