Abstract:
Systems and methods for predicting road conditions and traffic volume is provided. The method includes generating a graph of one or more road regions including a plurality of road intersections and a plurality of road segments, wherein the road intersections are represented as nodes and the road segments are represented as edges. The method can also include embedding the nodes from the graph into a node space, translating the edges of the graph into nodes of a line graph, and embedding the nodes of the line graph into the node space. The method can also include aligning the nodes from the line graph with the nodes from the graph, and optimizing the alignment, outputting a set of node and edge representations that predicts the traffic flow for each of the road segments and road intersections based on the optimized alignment of the nodes.
Abstract:
Systems and methods for a provenance based threat detection tool that builds a provenance graph including a plurality of paths using a processor device from provenance data obtained from one or more computer systems and/or networks; samples the provenance graph to form a plurality of linear sample paths, and calculates a regularity score for each of the plurality of linear sample paths using a processor device; selects a subset of linear sample paths from the plurality of linear sample paths based on the regularity score, and embeds each of the subset of linear sample paths by converting each of the subset of linear sample paths into a numerical vector using a processor device; detects anomalies in the embedded paths to identify malicious process activities, and terminates a process related to the embedded path having the identified malicious process activities.
Abstract:
Systems and methods are disclosed for securing an enterprise environment by detecting suspicious software. A global program lineage graph is constructed. Construction of the global program lineage graph includes creating a node for each version of a program having been installed on a set of user machines. Additionally, at least two nodes are linked with a directional edge. For each version of the program, a prevalence number of the set of user machines on which each version of the program had been installed is determined; and the prevalence number is recorded to the metadata associated with the respective node. Anomalous behavior is identified based on structures formed by the at least two nodes and associated directional edge in the global program lineage graph. An alarm is displayed on a graphical user interface for each suspicious software based on the identified anomalous behavior.
Abstract:
Systems and methods are disclosed for analyzing logs generated by a machine by analyzing a log and identifying one or more abstract landmark delimiters (ALDs) representing delimiters for log tokenization; from the log and ALDs, tokenizing the log and generating an increasingly tokenized format by separating the patterns with the ALD to form an intermediate tokenized log; iteratively repeating the tokenizing of the logs until a last intermediate tokenized log is processed as a final tokenized log; and applying the tokenized logs in applications.
Abstract:
Systems and methods for detection and prevention of Return-Oriented-Programming (ROP) attacks in one or more applications, including an attack detection device and a stack inspection device for performing stack inspection to detect ROP gadgets in a stack. The stack inspection includes stack walking from a stack frame at a top of the stack toward a bottom of the stack to detect one or more failure conditions, determining whether a valid stack frame and return code address is present; and determining a failure condition type if no valid stack frame and return code is present, with Type III failure conditions indicating an ROP attack. The ROP attack is contained using a containment device, and the ROP gadgets detected in the stack during the ROP attack are analyzed using an attack analysis device.
Abstract:
A computer implemented method for network monitoring includes providing network packet event characterization and analysis for network monitoring that includes supporting summarization and characterization of network packet traces collected across multiple processing elements of different types in a virtual network, including a trace slicing to organize individual packet events into path-based trace slices, a trace characterization to extract at least 2 types of feature matrix describing those trace slices, and a trace analysis to cluster, rank and query packet traces based on metrics of the feature matrix.
Abstract:
Methods and systems for performance inference include inferring an internal application status based on a unified call stack trace that includes both user and kernel information by inferring user function instances. A calling context encoding is generated that includes information regarding function calling paths. Application performance is analyzed based on the encoded calling contexts. The analysis includes performing a top-down latency breakdown and ranking calling contexts according to how costly each function calling path is.
Abstract:
Systems and methods for implementing a system architecture to support a trusted execution environment (TEE) with computational acceleration are provided. The method includes establishing a first trusted channel between a user application stored on an enclave and a graphics processing unit (GPU) driver loaded on a hypervisor. Establishing the first trusted channel includes leveraging page permissions in an extended page table (EPT) to isolate the first trusted channel between the enclave and the GPU driver in a physical memory of an operating system (OS). The method further includes establishing a second trusted channel between the GPU driver and a GPU device. The method also includes launching a unified TEE that includes the enclave and the hypervisor with execution of application code of the user application.
Abstract:
A method for ransomware detection and prevention includes receiving an event stream associated with one or more computer system events, generating user-added-value knowledge data for one or more digital assets by modeling digital asset interactions based on the event stream, including accumulating user-added-values of each of the one or more digital assets, and detecting ransomware behavior based at least in part on the user-added-value knowledge, including analyzing destruction of the user-added values for the one or more digital assets.
Abstract:
A computer-implemented method for implementing protocol-independent anomaly detection within an industrial control system (ICS) includes implementing a detection stage, including performing byte filtering using a byte filtering model based on at least one new network packet associated with the ICS, performing horizontal detection to determine whether a horizontal constraint anomaly exists in the at least one network packet based on the byte filtering and a horizontal model, including analyzing constraints across different bytes of the at least one new network packet, performing message clustering based on the horizontal detection to generate first cluster information, and performing vertical detection to determine whether a vertical anomaly exists based on the first cluster information and a vertical model, including analyzing a temporal pattern of each byte of the at least one new network packet.