Abstract:
Methods and systems for simultaneous determination of channel resource allocations and beam vectors for uplink frames are disclosed. One method includes receiving batch information from client devices indicating amounts of data to be transmitted on the uplink by the client devices. Further, signal quality can be measured on channel resources for each of the client devices and for each of a plurality of beam vectors. Additionally, rate information for the channel resources for each of the client devices is determined based on signal quality measurements. Moreover, the method includes computing, based on the batch information and the rate information, utilities for allocations of the channel resources to the client devices and for the beam vectors for at least one uplink frame and selecting, based on the utilities, at least one of the beam vectors and at least one of the allocations for transmission of the data on the uplink frame(s).
Abstract:
Methods and systems for simultaneous determination of channel resource allocations and beam vectors for uplink frames are disclosed. One method includes receiving batch information from client devices indicating amounts of data to be transmitted on the uplink by the client devices. Further, signal quality can be measured on channel resources for each of the client devices and for each of a plurality of beam vectors. Additionally, rate information for the channel resources for each of the client devices is determined based on signal quality measurements. Moreover, the method includes computing, based on the batch information and the rate information, utilities for allocations of the channel resources to the client devices and for the beam vectors for at least one uplink frame and selecting, based on the utilities, at least one of the beam vectors and at least one of the allocations for transmission of the data on the uplink frame(s).