Abstract:
In a liquid crystal display apparatus, a set of write-in voltages are generated corresponding to a horizontal line signal of an input video frame so that they appear at end points of the column lines of a LCD panel. The row lines of the LCD panel are successively selected and the write-in voltages are supplied from the end points of the column lines to the liquid crystal cells of the selected row line for a variable write-in period. In order to compensate for shades-of-gray differences between the top and bottom of the LCD panel, the write-in period is increasingly varied as a function of the geometric distance from the selected row line to the end points of the column lines. The write-in period may be increasingly variable from a nominal value, or from a less-than-nominal value to the nominal value, or a combination of both.
Abstract:
In a liquid crystal display device where each unit pixel p arranged on a liquid crystal panel 101A is constituted by a plurality of pixels p1, p2, and p3, the pixels p1, p2, and p3 are divided into sub-pixels p11 and p12, sub-pixels p21, and p22, and sub-pixels p31 and p32, respectively. The liquid crystal display device is provided with driver ICs 201 and 202 for driving the sub-pixels p11, p21, and p31, and the sub-pixels p12, p22, and p32 constituting the pixels so that different gradation-brightness value characteristics may be given. Due to this, multi-gradation display can be performed.