MULTI-MODAL TEST-TIME ADAPTATION
    1.
    发明申请

    公开(公告)号:US20230081913A1

    公开(公告)日:2023-03-16

    申请号:US17903393

    申请日:2022-09-06

    Abstract: Systems and methods are provided for multi-modal test-time adaptation. The method includes inputting a digital image into a pre-trained Camera Intra-modal Pseudo-label Generator, and inputting a point cloud set into a pre-trained Lidar Intra-modal Pseudo-label Generator. The method further includes applying a fast 2-dimension (2D) model, and a slow 2D model, to the inputted digital image to apply pseudo-labels, and applying a fast 3-dimension (3D) model, and a slow 3D model, to the inputted point cloud set to apply pseudo-labels. The method further includes fusing pseudo-label predictions from the fast models and the slow models through an Inter-modal Pseudo-label Refinement module to obtain robust pseudo labels, and measuring a prediction consistency for the pseudo-labels. The method further includes selecting confident pseudo-labels from the robust pseudo labels and measured prediction consistencies to form a final cross-modal pseudo-label set as a self-training signal, and updating batch parameters utilizing the self-training signal.

    Multi-modal test-time adaptation
    2.
    发明授权

    公开(公告)号:US12254681B2

    公开(公告)日:2025-03-18

    申请号:US17903393

    申请日:2022-09-06

    Abstract: Systems and methods are provided for multi-modal test-time adaptation. The method includes inputting a digital image into a pre-trained Camera Intra-modal Pseudo-label Generator, and inputting a point cloud set into a pre-trained Lidar Intra-modal Pseudo-label Generator. The method further includes applying a fast 2-dimension (2D) model, and a slow 2D model, to the inputted digital image to apply pseudo-labels, and applying a fast 3-dimension (3D) model, and a slow 3D model, to the inputted point cloud set to apply pseudo-labels. The method further includes fusing pseudo-label predictions from the fast models and the slow models through an Inter-modal Pseudo-label Refinement module to obtain robust pseudo labels, and measuring a prediction consistency for the pseudo-labels. The method further includes selecting confident pseudo-labels from the robust pseudo labels and measured prediction consistencies to form a final cross-modal pseudo-label set as a self-training signal, and updating batch parameters utilizing the self-training signal.

Patent Agency Ranking