Learning to simulate
    1.
    发明授权

    公开(公告)号:US11518382B2

    公开(公告)日:2022-12-06

    申请号:US16696087

    申请日:2019-11-26

    Abstract: A method is provided for danger prediction. The method includes generating fully-annotated simulated training data for a machine learning model responsive to receiving a set of computer-selected simulator-adjusting parameters. The method further includes training the machine learning model using reinforcement learning on the fully-annotated simulated training data. The method also includes measuring an accuracy of the trained machine learning model relative to learning a discriminative function for a given task. The discriminative function predicts a given label for a given image from the fully-annotated simulated training data. The method additionally includes adjusting the computer-selected simulator-adjusting parameters and repeating said training and measuring steps responsive to the accuracy being below a threshold accuracy. The method further includes predicting a dangerous condition relative to a motor vehicle and providing a warning to an entity regarding the dangerous condition by applying the trained machine learning model to actual unlabeled data for the vehicle.

    LEARNING TO SIMULATE
    2.
    发明申请

    公开(公告)号:US20200094824A1

    公开(公告)日:2020-03-26

    申请号:US16696087

    申请日:2019-11-26

    Abstract: A method is provided for danger prediction. The method includes generating fully-annotated simulated training data for a machine learning model responsive to receiving a set of computer-selected simulator-adjusting parameters. The method further includes training the machine learning model using reinforcement learning on the fully-annotated simulated training data. The method also includes measuring an accuracy of the trained machine learning model relative to learning a discriminative function for a given task. The discriminative function predicts a given label for a given image from the fully-annotated simulated training data. The method additionally includes adjusting the computer-selected simulator-adjusting parameters and repeating said training and measuring steps responsive to the accuracy being below a threshold accuracy. The method further includes predicting a dangerous condition relative to a motor vehicle and providing a warning to an entity regarding the dangerous condition by applying the trained machine learning model to actual unlabeled data for the vehicle.

Patent Agency Ranking