Abstract:
Technology is disclosed for enabling storage service compatibility. The technology can enable sorting of data stored across partitions, and provide for key splitting, e.g., to respond to data updates and additions.
Abstract:
To effectively implement ILM policies and account for unreliability in a geographically distributed large-scale storage system, “scanners” and “ILM rules appliers” can be deployed on nodes throughout the storage system for large scale ILM implementation. Each scanner is programmed to deterministically self-assign a region of object namespace and scan that region of object namespace. To “scan” a region, a scanner accesses metadata of each object that has an identifier within the scanner's region and inserts the object metadata into one of a set of queues for ILM evaluation. An ILM rules applier dequeues object metadata for evaluation against ILM rules and determines whether an ILM task is to be performed for ILM rule compliance.
Abstract:
To effectively implement ILM policies and account for unreliability in a geographically distributed large-scale storage system, “scanners” and “ILM rules appliers” can be deployed on nodes throughout the storage system for large scale ILM implementation. Each scanner is programmed to deterministically self-assign a region of object namespace and scan that region of object namespace. To “scan” a region, a scanner accesses metadata of each object that has an identifier within the scanner's region and inserts the object metadata into one of a set of queues for ILM evaluation. An ILM rules applier dequeues object metadata for evaluation against ILM rules and determines whether an ILM task is to be performed for ILM rule compliance.
Abstract:
Technology is disclosed for enabling storage service compatibility. The technology can enable sorting of data stored across partitions, and provide for key splitting, e.g., to respond to data updates and additions.