Abstract:
A method of producing a cylindrical bonded magnet includes providing a mold including an inner mold portion, an outer mold portion, a first orientation magnet, and a second orientation magnet, and performing molding to obtain a cylindrical bonded magnet by filling a region between the outer surface of the inner mold portion and the inner surface of the outer mold portion with a resin composition. When viewed in a cross-section, a first distance is shorter than a second distance, the first distance is a straight line distance along a magnetic field application direction and is tangent to a circle defined by the inner surface of the outer mold portion, and the second distance is a straight line distance along the magnetic field application direction and passes through a center of a circle defined by the outer surface of the inner mold portion.
Abstract:
A cylindrical multipole magnet having an inner peripheral surface and an outer peripheral surface and having N- and S-poles alternately and continuously in a circumferential direction. A surface magnetic flux density of the outer peripheral surface is at least 0.2 times a surface magnetic flux density of the inner peripheral surface. The cylindrical multipole magnet contains an anisotropic rare earth magnetic powder and a resin, with a filling ratio of the anisotropic rare earth magnetic powder being at least 50 vol % but not higher than 65 vol % with respect to a total volume of the anisotropic rare earth magnetic powder and the resin.
Abstract:
In a method for manufacturing a cylindrical bonded magnet, a molding space having a cylindrical shape is filled with a bonded magnet composition containing a magnetic material and a resin. The magnetic material disposed in the molding space is magnetically oriented using an orientation magnet. The orientation magnet includes a first permanent magnet and a second permanent magnet. The first and second permanent magnets are disposed such that same poles are opposite each other in the axial direction.