Document identification device, document identification method, and program

    公开(公告)号:US11462212B2

    公开(公告)日:2022-10-04

    申请号:US16613304

    申请日:2018-05-10

    摘要: A document identification device that improves class identification precision of multi-stream documents is provided. The document identification device includes: a primary stream expression generation unit that generates a primary stream expression, which is a fixed-length vector of a word sequence corresponding to each speaker's speech recorded in a setting including a plurality of speakers, for each speaker; a primary multi-stream expression generation unit that generates a primary multi-stream expression obtained by integrating the primary stream expression; a secondary stream expression generation unit that generates a secondary stream expression, which is a fixed-length vector generated based on the word sequence of each speaker and the primary multi-stream expression, for each speaker; and a secondary multi-stream expression generation unit that generates a secondary multi-stream expression obtained by integrating the secondary stream expression.

    Model learning device, method and recording medium for learning neural network model

    公开(公告)号:US11081105B2

    公开(公告)日:2021-08-03

    申请号:US16333156

    申请日:2017-09-05

    摘要: A model learning device comprises: an initial value setting part that uses a parameter of a learned first model including a neural network to set a parameter of a second model including a neural network having a same network structure as the first model; a first output probability distribution calculating part that calculates a first output probability distribution including a distribution of an output probability of each unit on an output layer, using learning features and the first model; a second output probability distribution calculating part that calculates a second output probability distribution including a distribution of an output probability of each unit on the output layer, using learning features and the second model; and a modified model update part that obtains a weighted sum of a second loss function calculated from correct information and from the second output probability distribution, and a cross entropy between the first output probability distribution and the second output probability distribution, and updates the parameter of the second model so as to reduce the weighted sum.