-
公开(公告)号:US20170139016A1
公开(公告)日:2017-05-18
申请号:US15347872
申请日:2016-11-10
Applicant: NXP B.V.
Inventor: Klaus Reimann , Robert van Veldhoven , Jaap Ruigrok , Selcuk Ersoy , Ralf van Otten , Jörg Kock
CPC classification number: G01R33/0029 , G01R33/0017 , G01R33/0035 , G01R33/0082 , G01R33/096
Abstract: A magnetic field sensor is disclosed for providing an output signal in response to an external magnetic field. The sensor comprises a primary magnetic field transducer for producing a primary signal in response to the external magnetic field and having a first magnetic field saturation characteristic; a secondary magnetic field transducer for producing a secondary signal in response to the external magnetic field and having a second magnetic field saturation characteristic. The first magnetic field saturation characteristic is different from the second magnetic field saturation characteristic. The sensor is configured to use the secondary signal to correct for errors in the output signal arising from saturation of the primary transducer.
-
公开(公告)号:US10816363B2
公开(公告)日:2020-10-27
申请号:US15906125
申请日:2018-02-27
Applicant: NXP B.V.
Inventor: Jaap Ruigrok , Edwin Schapendonk , Stephan Marauska , Dennis Helmboldt , Marijn Nicolaas van Dongen
Abstract: A system for determining angular position includes a magnet having at least four poles and an axis of rotation, wherein the magnet produces a magnetic field. A first magnetic field sensor produces a first output signal and a second magnetic field sensor produces a second output signal in response to the magnetic field. The magnetic field sensors are operated in a saturation mode in which the magnetic field sensors are largely insensitive to the field strength of the magnetic field. Thus, the first output signal is indicative of a first direction of the magnetic field and the second output signal is indicative of a second direction of the magnetic field. Methodology performed by a processing circuit entails combining the first and second output signals to obtain a rotation angle value of the magnet in which angular error from a stray magnetic field is at least partially canceled.
-
3.
公开(公告)号:US20190383644A1
公开(公告)日:2019-12-19
申请号:US16011974
申请日:2018-06-19
Applicant: NXP B.V.
Inventor: Stephan Marauska , Edwin Schapendonk , Dennis Helmboldt , Jaap Ruigrok , Ralf van Otten , Jan Przytarski , Jörg Kock
Abstract: A system includes a magnet configured to produce a magnetic field, the magnet having an asymmetric magnetization configuration that produces a distinct feature in the magnetic field. The asymmetric magnetization configuration can be produced via an asymmetric physical characteristic, nonuniform magnetization strengths, nonuniform magnetization distributions, off-centered magnet, and so forth. Magnetic field sensors are configured to produce output signals in response to the magnetic field, the output signals being indicative of the distinct feature in the magnetic field. A processing circuit receives the output signals and determines a rotation angle for the magnet using the output signals, the rotation angle having a range of 0-360°.
-
公开(公告)号:US20190301893A1
公开(公告)日:2019-10-03
申请号:US15941216
申请日:2018-03-30
Applicant: NXP B.V.
Inventor: Jaap Ruigrok , Edwin Schapendonk , Marijn Nicolaas van Dongen
IPC: G01D5/16
Abstract: A system for determining angular position includes a dipole magnet having an axis of rotation, wherein the dipole magnet produces a magnetic field. A first magnetic field sensor produces a first output signal and a second magnetic field sensor produces a second output signal in response to the magnetic field. The magnetic field sensors are operated in a saturation mode in which the magnetic field sensors are largely insensitive to the field strength of the magnetic field. Thus, the first output signal is indicative of a first direction of the magnetic field and the second output signal is indicative of a second direction of the magnetic field. Methodology performed by a processing circuit entails combining the first and second output signals to obtain a rotation angle value of the magnet in which angular error from a stray magnetic field is substantially cancelled.
-
公开(公告)号:US10914611B2
公开(公告)日:2021-02-09
申请号:US16113229
申请日:2018-08-27
Applicant: NXP B.V.
Inventor: Stephan Marauska , Edwin Schapendonk , Jörg Kock , Dennis Helmboldt , Ralf van Otten , Jaap Ruigrok
IPC: G01D5/16
Abstract: A system includes a magnet having an axis of rotation, the magnet being configured to produce a magnetic field. The system further includes a plurality of magnetoresistive sensor elements, each of the magnetoresistive sensor elements having a magnetic free layer configured to generate a vortex magnetization pattern in the magnetic free layer, and the magnetoresistive sensor elements being configured to produce output signals in response to the magnetic field. A rotation angle of a rotating element to which the magnet is coupled may be determined using the plurality of output signals.
-
公开(公告)号:US10006972B2
公开(公告)日:2018-06-26
申请号:US15347872
申请日:2016-11-10
Applicant: NXP B.V.
Inventor: Klaus Reimann , Robert van Veldhoven , Jaap Ruigrok , Selcuk Ersoy , Ralf van Otten , Jörg Kock
CPC classification number: G01R33/0029 , G01R33/0017 , G01R33/0035 , G01R33/0082 , G01R33/096
Abstract: A magnetic field sensor is disclosed for providing an output signal in response to an external magnetic field. The sensor comprises a primary magnetic field transducer for producing a primary signal in response to the external magnetic field and having a first magnetic field saturation characteristic; a secondary magnetic field transducer for producing a secondary signal in response to the external magnetic field and having a second magnetic field saturation characteristic. The first magnetic field saturation characteristic is different from the second magnetic field saturation characteristic. The sensor is configured to use the secondary signal to correct for errors in the output signal arising from saturation of the primary transducer.
-
7.
公开(公告)号:US10914609B2
公开(公告)日:2021-02-09
申请号:US16011974
申请日:2018-06-19
Applicant: NXP B.V.
Inventor: Stephan Marauska , Edwin Schapendonk , Dennis Helmboldt , Jaap Ruigrok , Ralf van Otten , Jan Przytarski , Jörg Kock
Abstract: A system includes a magnet configured to produce a magnetic field, the magnet having an asymmetric magnetization configuration that produces a distinct feature in the magnetic field. The asymmetric magnetization configuration can be produced via an asymmetric physical characteristic, nonuniform magnetization strengths, nonuniform magnetization distributions, off-centered magnet, and so forth. Magnetic field sensors are configured to produce output signals in response to the magnetic field, the output signals being indicative of the distinct feature in the magnetic field. A processing circuit receives the output signals and determines a rotation angle for the magnet using the output signals, the rotation angle having a range of 0-360°.
-
公开(公告)号:US10670425B2
公开(公告)日:2020-06-02
申请号:US15941216
申请日:2018-03-30
Applicant: NXP B.V.
Inventor: Jaap Ruigrok , Edwin Schapendonk , Marijn Nicolaas van Dongen
Abstract: A system for determining angular position includes a dipole magnet having an axis of rotation, wherein the dipole magnet produces a magnetic field. A first magnetic field sensor produces a first output signal and a second magnetic field sensor produces a second output signal in response to the magnetic field. The magnetic field sensors are operated in a saturation mode in which the magnetic field sensors are largely insensitive to the field strength of the magnetic field. Thus, the first output signal is indicative of a first direction of the magnetic field and the second output signal is indicative of a second direction of the magnetic field. Methodology performed by a processing circuit entails combining the first and second output signals to obtain a rotation angle value of the magnet in which angular error from a stray magnetic field is substantially cancelled.
-
公开(公告)号:US20200064157A1
公开(公告)日:2020-02-27
申请号:US16113229
申请日:2018-08-27
Applicant: NXP B.V.
Inventor: Stephan Marauska , Edwin Schapendonk , Jörg Kock , Dennis Helmboldt , Ralf van Otten , Jaap Ruigrok
IPC: G01D5/16
Abstract: A system includes a magnet having an axis of rotation, the magnet being configured to produce a magnetic field. The system further includes a plurality of magnetoresistive sensor elements, each of the magnetoresistive sensor elements having a magnetic free layer configured to generate a vortex magnetization pattern in the magnetic free layer, and the magnetoresistive sensor elements being configured to produce output signals in response to the magnetic field. A rotation angle of a rotating element to which the magnet is coupled may be determined using the plurality of output signals.
-
公开(公告)号:US20190265071A1
公开(公告)日:2019-08-29
申请号:US15906125
申请日:2018-02-27
Applicant: NXP B.V.
Inventor: Jaap Ruigrok , Edwin Schapendonk , Stephan Marauska , Dennis Helmboldt , Marijn Nicolaas van Dongen
IPC: G01D5/16
Abstract: A system for determining angular position includes a magnet having at least four poles and an axis of rotation, wherein the magnet produces a magnetic field. A first magnetic field sensor produces a first output signal and a second magnetic field sensor produces a second output signal in response to the magnetic field. The magnetic field sensors are operated in a saturation mode in which the magnetic field sensors are largely insensitive to the field strength of the magnetic field. Thus, the first output signal is indicative of a first direction of the magnetic field and the second output signal is indicative of a second direction of the magnetic field. Methodology performed by a processing circuit entails combining the first and second output signals to obtain a rotation angle value of the magnet in which angular error from a stray magnetic field is at least partially canceled.
-
-
-
-
-
-
-
-
-