Crystal oscillator start-up circuit and method

    公开(公告)号:US11431292B2

    公开(公告)日:2022-08-30

    申请号:US17451262

    申请日:2021-10-18

    Applicant: NXP B.V.

    Abstract: A circuit and method for starting-up a crystal oscillator is described. A crystal resonator is configured to be coupled to a start-up circuit including an H-bridge circuit having a number of switches. A plurality of switch control signals are generated in response to detecting a zero-crossing event of the motional current in the crystal resonator. The switches of the H-bridge circuit are controlled by the switch control signals to apply a voltage to the terminals of the crystal resonator in a first polarity during a first switch control phase and a second opposite polarity during a second switch control phase. During a respective first subphase of the respective switch control phase, the plurality of switches are configured in a first configuration to couple the supply node to a respective crystal resonator terminal. During a respective second subphase of the respective switch control phase the plurality of switches are configured in a second configuration to couple the supply node to the respective crystal resonator terminal. The resistance between the supply node and the respective crystal resonator terminal is larger in the second configuration than the first configuration. A zero-crossing is detected during each respective second sub-phase.

    CRYSTAL OSCILLATOR START-UP CIRCUIT AND METHOD

    公开(公告)号:US20220173699A1

    公开(公告)日:2022-06-02

    申请号:US17451262

    申请日:2021-10-18

    Applicant: NXP B.V.

    Abstract: A circuit and method for starting-up a crystal oscillator is described. A crystal resonator is configured to be coupled to a start-up circuit including an H-bridge circuit having a number of switches. A plurality of switch control signals are generated in response to detecting a zero-crossing event of the motional current in the crystal resonator. The switches of the H-bridge circuit are controlled by the switch control signals to apply a voltage to the terminals of the crystal resonator in a first polarity during a first switch control phase and a second opposite polarity during a second switch control phase. During a respective first subphase of the respective switch control phase, the plurality of switches are configured in a first configuration to couple the supply node to a respective crystal resonator terminal. During a respective second subphase of the respective switch control phase the plurality of switches are configured in a second configuration to couple the supply node to the respective crystal resonator terminal. The resistance between the supply node and the respective crystal resonator terminal is larger in the second configuration than the first configuration. A zero-crossing is detected during each respective second sub-phase.

Patent Agency Ranking