Abstract:
Exemplary embodiments provide various techniques for managing groups of authenticated entities. In one exemplary computer-implemented method, an entity accesses a group roster that includes a first group identifier identifying a first group, a first group digital certificate associated with the first group, and a first entity identifier identifying the entity being a member of the first group. The entity also receives a request to update the group roster. Here, the request includes a second group identifier identifying a second group and a second group digital certificate associated with the second group. In response to the request, the entity replaces the first group identifier in the group roster with the second group identifier. Additionally, in response to the request, the entity replaces the first group digital certificate with the second group digital certificate. The replacements change a membership of the entity from the first group to the second group.
Abstract:
One or more techniques and/or systems are provided for facilitating transactions across multiple transactional domains. For example, a first committer stores first data according to a first transactional domain (e.g., communication protocol data of a smart television) and a second committer stores second data according to a second transactional domain (e.g., communication protocol data of a mobile device). The first committer may commit to updating the first data from an old data state to a new data state (e.g., update from an unauthenticated protocol to an authenticated protocol). The first committer may instruct the second committer to perform a second commit of the second data to the new data state. If the second commit succeeds, then the first committer may utilize the new data state (e.g., utilize the authenticated protocol for communication) otherwise the first committer may utilize the old data state (e.g., utilize the unauthenticated protocol for communication).
Abstract:
Example embodiments provide various techniques for securing communications within a group of entities. In one example method, a request from an entity to join the group is received and a signed, digital certificate associated with the entity is accessed. Here, the signed, digital certificate is signed with a group private key that is associated with a certification authority for the group. The signed, digital certificate is added to a group roster, and this addition is to admit the entity into the group. The group roster with the signed, digital certificate is itself signed with the group private key and distributed to the group, which includes the entity that transmitted the request. Communication to the entity is then encrypted using the signed, digital certificate included in the group roster.
Abstract:
One or more techniques and/or devices are provided for dynamic resource allocation based upon network flow control. For example, a first counter, corresponding to a count of communication availability signals provided by a network interface to a storage process, may be maintained. A second counter, corresponding to a count of communication unavailability signals provided by the network interface to the storage process, may be maintained. Responsive to the first counter exceeding a resource allocation threshold, additional resources may be dynamically allocated to the storage process during operation of the storage process. Responsive to the second counter exceeding a resource deallocation threshold, resources may be dynamically deallocated from the storage process during operation of the storage process. In this way, resources allocation for the storage process may be dynamically adjusted based upon real-time network flow control information indicative of whether the storage process is efficiently utilizing network communication channel availability.
Abstract:
One or more techniques and/or devices are provided for dynamic resource allocation based upon network flow control. For example, a first counter, corresponding to a count of communication availability signals provided by a network interface to a storage process, may be maintained. A second counter, corresponding to a count of communication unavailability signals provided by the network interface to the storage process, may be maintained. Responsive to the first counter exceeding a resource allocation threshold, additional resources may be dynamically allocated to the storage process during operation of the storage process. Responsive to the second counter exceeding a resource deallocation threshold, resources may be dynamically deallocated from the storage process during operation of the storage process. In this way, resources allocation for the storage process may be dynamically adjusted based upon real-time network flow control information indicative of whether the storage process is efficiently utilizing network communication channel availability.
Abstract:
In some embodiments, a first location server, in response to a request from a client to access an object, determines whether a first location information stored at the first location server indicates locations of instance(s) of the object. The first location server, in response to a determination that the first location information indicates the locations of the instances of the object, determines a first location of a first instance of the object at a first payload server and a second location of a second instance of the object at a second payload server from the first location information. The first location server determines priority values of the first and second locations. The first location server generates a reply to the request, the reply indicating the first and second locations of the first and second instances of the object, and the priority values of the first and second locations.
Abstract:
In some embodiments, a first location server, in response to a request from a client to access an object, determines whether a first location information stored at the first location server indicates locations of instance(s) of the object. The first location server, in response to a determination that the first location information indicates the locations of the instances of the object, determines a first location of a first instance of the object at a first payload server and a second location of a second instance of the object at a second payload server from the first location information. The first location server determines priority values of the first and second locations. The first location server generates a reply to the request, the reply indicating the first and second locations of the first and second instances of the object, and the priority values of the first and second locations.
Abstract:
One or more techniques and/or devices are provided for dynamic resource allocation based upon network flow control. For example, a first counter, corresponding to a count of communication availability signals provided by a network interface to a storage process, may be maintained. A second counter, corresponding to a count of communication unavailability signals provided by the network interface to the storage process, may be maintained. Responsive to the first counter exceeding a resource allocation threshold, additional resources may be dynamically allocated to the storage process during operation of the storage process. Responsive to the second counter exceeding a resource deallocation threshold, resources may be dynamically deallocated from the storage process during operation of the storage process. In this way, resources allocation for the storage process may be dynamically adjusted based upon real-time network flow control information indicative of whether the storage process is efficiently utilizing network communication channel availability.
Abstract:
One or more techniques and/or devices are provided for dynamic resource allocation based upon network flow control. For example, a first counter, corresponding to a count of communication availability signals provided by a network interface to a storage process, may be maintained. A second counter, corresponding to a count of communication unavailability signals provided by the network interface to the storage process, may be maintained. Responsive to the first counter exceeding a resource allocation threshold, additional resources may be dynamically allocated to the storage process during operation of the storage process. Responsive to the second counter exceeding a resource deallocation threshold, resources may be dynamically deallocated from the storage process during operation of the storage process. In this way, resources allocation for the storage process may be dynamically adjusted based upon real-time network flow control information indicative of whether the storage process is efficiently utilizing network communication channel availability.
Abstract:
One or more techniques and/or devices are provided for dynamic resource allocation based upon network flow control. For example, a first counter, corresponding to a count of communication availability signals provided by a network interface to a storage process, may be maintained. A second counter, corresponding to a count of communication unavailability signals provided by the network interface to the storage process, may be maintained. Responsive to the first counter exceeding a resource allocation threshold, additional resources may be dynamically allocated to the storage process during operation of the storage process. Responsive to the second counter exceeding a resource deallocation threshold, resources may be dynamically deallocated from the storage process during operation of the storage process. In this way, resources allocation for the storage process may be dynamically adjusted based upon real-time network flow control information indicative of whether the storage process is efficiently utilizing network communication channel availability.