摘要:
An ambulatory or implantable device, such as a pacer, defibrillator, or other cardiac rhythm management device, can tolerate magnetic resonance imaging (MRI) or other noise without turning on an integrated circuit diode by selectively providing a bias voltage that can overcome an expected induced voltage resulting from the MRI or other noise.
摘要:
An ambulatory or implantable device, such as a pacer, defibrillator, or other cardiac rhythm management device, can tolerate magnetic resonance imaging (MRI) or other noise without turning on an integrated circuit diode by selectively providing a bias voltage that can overcome an expected induced voltage resulting from the MRI or other noise.
摘要:
One aspect of this disclosure relates to a system for dynamic battery management in implantable medical devices. An embodiment of the system includes two or more devices for measuring battery capacity for an implantable medical device battery. The embodiment also includes a controller connected to the measuring devices. The controller is adapted to combine the measurements from the measuring devices using a weighted average to determine battery capacity consumed. According to various embodiments, at least one of the measuring devices includes a coulometer. At least one of the measuring devices includes a capacity-by-voltage device, according to an embodiment. The system further includes a display in communication with the controller in various embodiments. The display is adapted to provide a depiction of battery longevity in units of time remaining in the life of the implantable medical device battery, according to various embodiments. Other aspects and embodiments are provided herein.
摘要:
One aspect of this disclosure relates to a system for dynamic battery management in implantable medical devices. An embodiment of the system includes two or more devices for measuring battery capacity for an implantable medical device battery. The embodiment also includes a controller connected to the measuring devices. The controller is adapted to combine the measurements from the measuring devices using a weighted average to determine battery capacity consumed. According to various embodiments, at least one of the measuring devices includes a coulometer. At least one of the measuring devices includes a capacity-by-voltage device, according to an embodiment. The system further includes a display in communication with the controller in various embodiments. The display is adapted to provide a depiction of battery longevity in units of time remaining in the life of the implantable medical device battery, according to various embodiments. Other aspects and embodiments are provided herein.
摘要:
One aspect of this disclosure relates to a system for dynamic battery management in implantable medical devices. An embodiment of the system includes two or more devices for measuring battery capacity for an implantable medical device battery. The embodiment also includes a controller connected to the measuring devices. The controller is adapted to combine the measurements from the measuring devices using a weighted average to determine battery capacity consumed. According to various embodiments, at least one of the measuring devices includes a coulometer. At least one of the measuring devices includes a capacity-by-voltage device, according to an embodiment. The system further includes a display in communication with the controller in various embodiments. The display is adapted to provide a depiction of battery longevity in units of time remaining in the life of the implantable medical device battery, according to various embodiments. Other aspects and embodiments are provided herein.
摘要:
One aspect of this disclosure relates to a system for dynamic battery management in implantable medical devices. An embodiment of the system includes two or more devices for measuring battery capacity for an implantable medical device battery. The embodiment also includes a controller connected to the measuring devices. The controller is adapted to combine the measurements from the measuring devices using a weighted average to determine battery capacity consumed. According to various embodiments, at least one of the measuring devices includes a coulometer. At least one of the measuring devices includes a capacity-by-voltage device, according to an embodiment. The system further includes a display in communication with the controller in various embodiments. The display is adapted to provide a depiction of battery longevity in units of time remaining in the life of the implantable medical device battery, according to various embodiments. Other aspects and embodiments are provided herein.
摘要:
An implantable or other ambulatory medical device can include a magnetic field detector, such as configured to detect an intense magnetic field. In an example, the ambulatory or implantable medical device can include an inductive switching supply, such as including one or more of a peak current comparator, or a zero current comparator. In an example, the ambulatory or implantable medical device can include a controller circuit, configured to control a switch, such as to controllably charge an inductor included in the inductive switching supply.
摘要:
An implantable or other ambulatory medical device can include a magnetic field detector, such as configured to detect an intense magnetic field. In an example, the ambulatory or implantable medical device can include an inductive switching supply, such as including one or more of a peak current comparator, or a zero current comparator. In an example, the ambulatory or implantable medical device can include a controller circuit, configured to control a switch, such as to controllably charge an inductor included in the inductive switching supply.
摘要:
During auto-threshold, autocapture, or other evoked response sensing, post-pace artifact is reduced by using a smaller coupling capacitor value than what is used when not in such an evoked response sensing configuration. This can be accomplished by borrowing another capacitor for use as the coupling capacitor. The borrowed capacitor can be a backup pacing capacitor from the same or a different pacing channel. The borrowed capacitor can also be a coupling capacitor from a different pacing channel.
摘要:
During auto-threshold, autocapture, or other evoked response sensing, post-pace artifact is reduced by using a smaller coupling capacitor value than what is used when not in such an evoked response sensing configuration. This can be accomplished by borrowing another capacitor for use as the coupling capacitor. The borrowed capacitor can be a backup pacing capacitor from the same or a different pacing channel. The borrowed capacitor can also be a coupling capacitor from a different pacing channel.