摘要:
A method of optimizing the operation of left and right propellers disposed on either side of the fuselage of a rotorcraft including a main rotor. Left and right aerodynamic surfaces include respective left and right flaps suitable for being deflected, yaw stabilization of the rotorcraft being achieved via first and second pitches respectively of the left and right propellers, and the deflection angles of the left and right flaps are adjusted solely during predetermined stages of flight in order to minimize a differential pitch of the left and right propellers so as to optimize the operation of the left and right propellers, the predetermined stages of flight including stages of flight at low speed performed at an indicated air speed (IAS) of the rotorcraft that is below a predetermined threshold, and stages of yaw-stabilized flight at high speed performed at an indicated air speed of the rotorcraft greater than the predetermined threshold.
摘要:
A method of controlling the yaw attitude of a hybrid helicopter including a fuselage and an additional lift surface provided with first and second half-wings extending from either side of the fuselage, each half-wing being provided with a respective first or second propeller. The hybrid helicopter has a thrust control suitable for modifying the first pitch of the first blades of the first propeller and the second pitch of the second blades of the second propeller by the same amount. The hybrid helicopter includes yaw control elements for generating an original order for modifying the yaw attitude of the hybrid helicopter by increasing the pitch of the blades of one propeller and decreasing the pitch of the blades of the other propeller, the original order is optimized as a function of the position of the thrust control to obtain an optimized yaw control order that is applied to the first and second blades.
摘要:
A method of controlling and regulating a rotorcraft presenting a speed of advance that is high and stabilized, the rotorcraft including at least a main lift rotor (10), at least one variable pitch propulsion propeller (6), and at least one power plant for driving the main rotor(s) (10) and at least one propeller (6), said method consisting in using a first loop for regulating pitch or attitude, and a second loop for regulating speed by means of a control over the mean pitch of the propulsion propeller(s) (6), wherein the method further consists in controlling the deflection angle of a horizontal tailplane (30, 25, 35) by using a third loop for controlling and regulating said deflection angle of the horizontal tailplane (30, 25, 35) in order to minimize the total power consumed by the main rotor (10) and the propulsive propeller(s) (6), for a given speed and attitude.
摘要:
A method of controlling and regulating a rotorcraft presenting a speed of advance that is high and stabilized, the rotorcraft including at least a main lift rotor (10), at least one variable pitch propulsion propeller (6), and at least one power plant for driving the main rotor(s) (10) and at least one propeller (6), said method consisting in using a first loop for regulating pitch or attitude, and a second loop for regulating speed by means of a control over the mean pitch of the propulsion propeller(s) (6), wherein the method further consists in controlling the deflection angle of a horizontal tailplane (30, 25, 35) by using a third loop for controlling and regulating said deflection angle of the horizontal tailplane (30, 25, 35) in order to minimize the total power consumed by the main rotor (10) and the propulsive propeller(s) (6), for a given speed and attitude.
摘要:
An autopilot device (10) and method for automatically piloting a rotary wing aircraft (1), having at least one propulsion propeller (2), said rotary wing comprising at least one rotor (3) with a plurality of blades (3′), said device comprising a processor unit (15) co-operating with at least one collective control system (7) for controlling the collective pitch of said blades (3′). The device includes engagement means (20) connected to the processor unit (15) for engaging an assisted mode of piloting for maintaining an angle of attack, said processor unit (15) automatically controlling the collective pitch of the blades (3′) when the assisted mode of piloting for maintaining an angle of attack is engaged by controlling said collective control system to maintain an aerodynamic angle of attack (α) of the aircraft at a reference angle of attack (α*).
摘要:
A method is provided for assisting the piloting of a rotorcraft in which vertical speed variation (DVZ) of the rotorcraft is determined as a function of a horizontal speed variation (DVH) of the aircraft and as a function of data representative of the power (W) absorbed for providing the rotorcraft with lift and forward advance, the ratio between variation speed vertical (DVZ) and the horizontal speed (VH) of the rotorcraft is calculated, and a piloting assistance symbol is presented on a display in a position (α) that is a function of the ratio.
摘要:
An autopilot device (10) and method for automatically piloting a rotary wing aircraft (1), having at least one propulsion propeller (2), said rotary wing comprising at least one rotor (3) with a plurality of blades (3′), said device comprising a processor unit (15) co-operating with at least one collective control system (7) for controlling the collective pitch of said blades (3′). The device includes engagement means (20) connected to the processor unit (15) for engaging an assisted mode of piloting for maintaining an angle of attack, said processor unit (15) automatically controlling the collective pitch of the blades (3′) when the assisted mode of piloting for maintaining an angle of attack is engaged by controlling said collective control system to maintain an aerodynamic angle of attack (α) of the aircraft at a reference angle of attack (α*).
摘要:
A piloting assistance device for a hybrid helicopter is provided with a rotary wing, two half-wings (8′, 8″) provided respectively with first and second propellers (6′, 6″), and an engine installation continuously driving the rotary wing (100) and the propellers by meshing with a mechanical interconnection system. Furthermore, the device is provided with computer element (40) for determining maximum mean pitch (max) applicable to the first and second propellers without exceeding the power available for the propellers, the computer element determining the maximum mean pitch (max) as a function of the current mean pitch of the blades of the first and second propellers as measured in real time, of a maximum power that can be delivered by the engine installation, of a current power being delivered by the engine installation, and of a relationship determining a power gradient (GRD) as a function of pitch for the first and second propellers.
摘要:
A piloting assistance device (5) comprising a calculation unit (10) and a display unit (20). The calculation unit (10) executes stored instructions to determine at least one thrust margin for a propeller between a current thrust being exerted by said propeller and a threshold thrust corresponding to a negative power limit (Pmin), and to determine a main minimum total ground slope that can be followed by the aircraft in descent as a function of said thrust margin. Finally, the calculation unit presents a main symbol (25) on a display unit (20), the main symbol (25) representing the minimum total ground slope that can be followed by the aircraft (1) in descent, the main symbol (25) appearing superimposed on a representation (21) of the surroundings that exist in front of the aircraft (1).
摘要:
The present invention relates to a method and to a device for reducing the vibration generated on the structure 17 of a helicopter 2 by the flow of air through the main rotor 5 and by the flow of air along the fuselage 3. According to the invention, said device 1 comprises: at least one sensor 18, 19, 20 measuring the vibration generated on said structure 17; and computer means 30 responsive to said vibration measurements to determine variation in the angle of incidence of a tail fin 9 of the helicopter 2 suitable for generating an opposing force {right arrow over (T1)}, {right arrow over (T2)} for opposing said vibration, and transmitting the variation in angle of incidence as determined in this way to a control system 10 for controlling the angle of incidence of the tail fin 9.