摘要:
A ferroelectric/pyroelectric sensor that employs a technique for determining a charge output of a pyroelectric element of the sensor by measuring the hysteresis loop output of the element several times during a particular time frame for the same temperature. An external AC signal is applied to the pyroelectric element to cause the hysteresis loop output from the element to switch polarization. Charge integration circuitry, such as a combination capacitor and operational amplifier, is employed to measure the charge from the element. A mechanical shutter is not used, and thus the charge integration output from the element is directly proportional to the incident radiation thereof.
摘要:
A ferroelectric/pyroelectric sensor that employs a technique for determining a charge output of a pyroelectric element of the sensor by measuring the hysteresis loop output of the element several times during a particular time frame for the same temperature. An external AC signal is applied to the pyroelectric element to cause the hysteresis loop output from the element to switch polarization. The frequency of the external AC signal is greater than the frequency of a chopper selectively applying a reference temperature and a scene temperature alternately to the pyroelectric element. Each time the chopper provides the reference temperature or the scene temperature to the element, the alternating external source covers multiple cycles so that the hysteresis loop output is switched multiple times for increased signal averaging. Because the shape and size of the loop is different for the reference temperature and the scene temperature, a comparison between the measured charge for both time periods can be provided to give a signal having an increased signal-to-noise ratio.
摘要:
A low cost, bi-directional manifold air flow sensing device based on sensed temperature differential due to airflow achieves improved sensitivity and frequency response by eliminating the heater element of the conventional sensor topology, and operating the sensor elements at a relatively higher current so that each temperature sensing element heats both itself and the other temperature sensing element. The sensitivity is significantly increased due to the increased current in the sensor elements, and the frequency response is significantly increased due to closer spacing of the sensor elements. With this new topology, the sensor elements are said to be mutually heated. In a particularly advantageous mechanization, the sensing device includes two separate pairs of upstream and downstream sensing elements, and the sensing elements are connected in the four legs of a Wheatstone bridge. The sensitivity is doubled since sensor elements are connected in each of the bridge legs, and performance and cost are improved through the elimination of off-chip bridge components. A simple, low cost, temperature compensation circuit compensates for ambient temperature variations.