NAME MATCHING ENGINE BOOSTED BY MACHINE LEARNING

    公开(公告)号:US20240370500A1

    公开(公告)日:2024-11-07

    申请号:US18773452

    申请日:2024-07-15

    Abstract: Techniques are described herein for a Name Matching Engine that integrates two Machine Learning (ML) module options. The first ML module is a feature-engineered classifier that boosts text-based name matching techniques with a binary classifier ML model. The feature-engineered classifier comprises a first stage of text-based candidate finding, and a second stage in which a binary classifier model predicts whether each string, of the candidate match list, is a match or not. The binary classifier model is based on features from two or more of: a name feature level, a word feature level, a character feature level, and an initial feature level. The second ML module of the Name Matching Engine comprises an end-to-end Recurrent Neural Network (RNN) model that directly accepts name strings as a sequence of n-grams and generates learned text embeddings. The text embeddings of matching name strings are close to each other in the feature space.

    NAME MATCHING ENGINE BOOSTED BY MACHINE LEARNING

    公开(公告)号:US20210287069A1

    公开(公告)日:2021-09-16

    申请号:US16989306

    申请日:2020-08-10

    Abstract: Techniques are described herein for a Name Matching Engine that integrates two Machine Learning (ML) module options. The first ML module is a feature-engineered classifier that boosts text-based name matching techniques with a binary classifier ML model. The feature-engineered classifier comprises a first stage of text-based candidate finding, and a second stage in which a binary classifier model predicts whether each string, of the candidate match list, is a match or not. The binary classifier model is based on features from two or more of: a name feature level, a word feature level, a character feature level, and an initial feature level. The second ML module of the Name Matching Engine comprises an end-to-end Recurrent Neural Network (45RNN) model that directly accepts name strings as a sequence of n-grams and generates learned text embeddings. The text embeddings of matching name strings are close to each other in the feature space.

Patent Agency Ranking