Abstract:
Techniques are described for memory-efficient spatial histogram construction. A hierarchical spatial index has leaf nodes and non-leaf nodes, each leaf node representing a bounding region containing a spatial object, each non-leaf node representing a bounding region at least partially containing one or more spatial objects. A plurality of selected nodes is selected from the plurality of non-leaf nodes. The plurality of selected nodes includes an ancestor of each leaf node. For each particular node in the plurality of selected nodes, a weight is determined. The weight is based on the number of spatial objects contained within the bounding region of the particular node. A spatial partitioning of the plurality of selected nodes is determined. A spatial histogram is generated based on the spatial partitioning of the weights of the plurality of selected nodes.
Abstract:
An optimized method of processing queries requesting a description of a spatial relationship between a test geometry and a query geometry, such as points, lines, polygons, and collections thereof, is disclosed. A first part of the method finds a first spatial relationship between a minimum bounding rectangle (MBR) of the test geometry and an In-Memory R-tree (IMR-tree) built to describe the query geometry. If the first relationship does not specify the requested description, then a second part of the method uses the IMR-tree of the query geometry to find a second spatial relationship between the test geometry itself and the query geometry. Optimizations are applied to the first part and to the second part. Optimizations in the second part depend on the test geometry.
Abstract:
An optimized method of processing queries requesting a description of a spatial relationship between a test geometry and a query geometry, such as points, lines, polygons, and collections thereof, is disclosed. A first part of the method finds a first spatial relationship between a minimum bounding rectangle (MBR) of the test geometry and an In-Memory R-tree (IMR-tree) built to describe the query geometry. If the first relationship does not specify the requested description, then a second part of the method uses the IMR-tree of the query geometry to find a second spatial relationship between the test geometry itself and the query geometry. Optimizations are applied to the first part and to the second part. Optimizations in the second part depend on the test geometry.
Abstract:
Techniques are described for memory-efficient spatial histogram construction. A hierarchical spatial index has leaf nodes and non-leaf nodes, each leaf node representing a bounding region containing a spatial object, each non-leaf node representing a bounding region at least partially containing one or more spatial objects. A plurality of selected nodes is selected from the plurality of non-leaf nodes. The plurality of selected nodes includes an ancestor of each leaf node. For each particular node in the plurality of selected nodes, a weight is determined. The weight is based on the number of spatial objects contained within the bounding region of the particular node. A spatial partitioning of the plurality of selected nodes is determined. A spatial histogram is generated based on the spatial partitioning of the weights of the plurality of selected nodes.
Abstract:
An optimized method of processing queries requesting a description of a spatial relationship between a test geometry and a query geometry, such as points, lines, polygons, and collections thereof, is disclosed. A first part of the method finds a first spatial relationship between a minimum bounding rectangle (MBR) of the test geometry and an In-Memory R-tree (IMR-tree) built to describe the query geometry. If the first relationship does not specify the requested description, then a second part of the method uses the IMR-tree of the query geometry to find a second spatial relationship between the test geometry itself and the query geometry. Optimizations are applied to the first part and to the second part. Optimizations in the second part depend on the test geometry.
Abstract:
An optimized method of processing queries requesting a description of a spatial relationship between a test geometry and a query geometry, such as points, lines, polygons, and collections thereof, is disclosed. A first part of the method finds a first spatial relationship between a minimum bounding rectangle (MBR) of the test geometry and an In-Memory R-tree (IMR-tree) built to describe the query geometry. If the first relationship does not specify the requested description, then a second part of the method uses the IMR-tree of the query geometry to find a second spatial relationship between the test geometry itself and the query geometry. Optimizations are applied to the first part and to the second part. Optimizations in the second part depend on the test geometry.