Abstract:
A system and method for marshaling database data from a native interface layer, to a Java layer, using a linear array. In accordance with an embodiment, a request is received from a software application to query or access data stored at the database. At a database driver native interface layer, the system obtains cell data from the database, determines cell coordinates and a cell metadata, and linearizes the cell data if required. The linearized data is then flushed to a linear byte array in the database driver presentation layer, and the cell coordinates and cell metadata are provided for use by a compact data handler and the application in accessing the data.
Abstract:
A system and method for efficient storage and retrieval of fragmented data using a pseudo linear dynamic byte array is provided. In accordance with an embodiment, the system comprises a database driver which provides access by a software application to a database. The database driver uses a dynamic byte array to enable access by the application to data in the database, including determining a size of a required data to be stored in memory, and successively allocating and copying the required data into the dynamic byte array as a succession of blocks. The data stored within the succession of blocks can then be accessed and provided to the application.
Abstract:
A system and method for marshaling database data from a native interface layer, to a Java layer, using a linear array. In accordance with an embodiment, a request is received from a software application to query or access data stored at the database. At a database driver native interface layer, the system obtains cell data from the database, determines cell coordinates and a cell metadata, and linearizes the cell data if required. The linearized data is then flushed to a linear byte array in the database driver presentation layer, and the cell coordinates and cell metadata are provided for use by a compact data handler and the application in accessing the data.
Abstract:
A system and method for efficient storage and retrieval of fragmented data using a pseudo linear dynamic byte array is provided. In accordance with an embodiment, the system comprises a database driver which provides access by a software application to a database. The database driver uses a dynamic byte array to enable access by the application to data in the database, including determining a size of a required data to be stored in memory, and successively allocating and copying the required data into the dynamic byte array as a succession of blocks. The data stored within the succession of blocks can then be accessed and provided to the application.