摘要:
Embodiments disclosed herein provide redundant connectivity between an Ethernet Automatic Protection Switching (EAPS) access network and a Virtual Private LAN Service (VPLS) network. A first VPLS node is provided to function as an EAPS controller node. A second VPLS node is provided to function as an EAPS partner node. The first and second VPLS nodes are linked by a pseudowire and an EAPS shared-link. Additional EAPS nodes are also provided. The additional EAPS nodes are linked to each other and one of the additional EAPS nodes is designated as a master node. Links are also established between the VPLS nodes and the EAPS nodes such that one or more EAPS rings are formed. Each EAPS ring includes the shared-link between the first and second VPLS nodes. The EAPS rings are monitored to detect link failures. When a failure of the pseudowire shared-link between the first and second VPLS nodes is detected, all pseudowire links associated with the first VPLS node are disabled if any of the EAPS nodes has a path to both of the VPLS nodes. Otherwise, the existing pseudowire links associated with the first VPLS node are maintained.
摘要:
Embodiments disclosed herein provide redundant connectivity between an Ethernet Automatic Protection Switching (EAPS) access network and a Virtual Private LAN Service (VPLS) network. A first VPLS node is provided to function as an EAPS controller node. A second VPLS node is provided to function as an EAPS partner node. The first and second VPLS nodes are linked by a pseudowire and an EAPS shared-link. Additional EAPS nodes are also provided. The additional EAPS nodes are linked to each other and one of the additional EAPS nodes is designated as a master node. Links are also established between the VPLS nodes and the EAPS nodes such that one or more EAPS rings are formed. Each EAPS ring includes the shared-link between the first and second VPLS nodes. The EAPS rings are monitored to detect link failures. When a failure of the pseudowire shared-link between the first and second VPLS nodes is detected, all pseudowire links associated with the first VPLS node are disabled if any of the EAPS nodes has a path to both of the VPLS nodes. Otherwise, the existing pseudowire links associated with the first VPLS node are maintained.
摘要:
Embodiments disclosed herein provide redundant connectivity between an Ethernet Automatic Protection Switching (EAPS) access network and a Virtual Private LAN Service (VPLS) network. A first VPLS node is provided to function as an EAPS controller node. A second VPLS node is provided to function as an EAPS partner node. The first and second VPLS nodes are linked by a pseudowire and an EAPS shared-link. Additional EAPS nodes are also provided. The additional EAPS nodes are linked to each other and one of the additional EAPS nodes is designated as a master node. Links are also established between the VPLS nodes and the EAPS nodes such that one or more EAPS rings are formed. Each EAPS ring includes the shared-link between the first and second VPLS nodes. The EAPS rings are monitored to detect link failures. When a failure of the pseudowire shared-link between the first and second VPLS nodes is detected, all pseudowire links associated with the first VPLS node are disabled if any of the EAPS nodes has a path to both of the VPLS nodes. Otherwise, the existing pseudowire links associated with the first VPLS node are maintained.
摘要:
Embodiments disclosed herein provide redundant connectivity between an Ethernet Automatic Protection Switching (EAPS) access network and a Virtual Private LAN Service (VPLS) network. A first VPLS node is provided to function as an EAPS controller node. A second VPLS node is provided to function as an EAPS partner node. The first and second VPLS nodes are linked by a pseudowire and an EAPS shared-link. Additional EAPS nodes are also provided. The additional EAPS nodes are linked to each other and one of the additional EAPS nodes is designated as a master node. Links are also established between the VPLS nodes and the EAPS nodes such that one or more EAPS rings are formed. Each EAPS ring includes the shared-link between the first and second VPLS nodes. The EAPS rings are monitored to detect link failures. When a failure of the pseudowire shared-link between the first and second VPLS nodes is detected, all pseudowire links associated with the first VPLS node are disabled if any of the EAPS nodes has a path to both of the VPLS nodes. Otherwise, the existing pseudowire links associated with the first VPLS node are maintained.
摘要:
Embodiments disclosed herein provide redundant connectivity between an Ethernet Automatic Protection Switching (EAPS) access network and a Virtual Private LAN Service (VPLS) network. A first VPLS node is provided to function as an EAPS controller node. A second VPLS node is provided to function as an EAPS partner node. The first and second VPLS nodes are linked by a pseudowire and an EAPS shared-link. Additional EAPS nodes are also provided. The additional EAPS nodes are linked to each other and one of the additional EAPS nodes is designated as a master node. Links are also established between the VPLS nodes and the EAPS nodes such that one or more EAPS rings are formed. Each EAPS ring includes the shared-link between the first and second VPLS nodes. The EAPS rings are monitored to detect link failures. When a failure of the pseudowire shared-link between the first and second VPLS nodes is detected, all pseudowire links associated with the first VPLS node are disabled if any of the EAPS nodes has a path to both of the VPLS nodes. Otherwise, the existing pseudowire links associated with the first VPLS node are maintained.
摘要:
The subject matter described herein includes methods, systems, and computer readable media for automatically selecting between Internet protocol switching modes on a per-module basis in a packet forwarding device. According to one aspect, the subject matter described herein includes a packet forwarding device including at least one input/output (I/O) module. The at least one I/O module includes a longest prefix matching (LPM) table, an Internet protocol forwarding database (IPFDB) and the packet forwarding device includes an IP routing table and an IPFDB. When the I/O module operates in an LPM mode, the IPFDB on the I/O module is populated with entries corresponding to active hosts, the LPM table on the I/O module is populated from the IP routing table with routes learned from IP routing protocols, and layer 3 packets received by the I/O module are routed using the IPFDB and LPM table of the I/O module. An automatic mode-selection module determines a capacity of the LPM table on the I/O module. The automatic mode-selection module also determines a total number of IP routes stored in the IP routing table and determines a relationship between the total number of IP routes and the capacity of the LPM table. In response to determining that the total number of IP routes has a predetermined relationship with the capacity of the LPM table, the automatic mode-selection module also automatically switches the I/O module from the LPM mode to an IPFDB mode, where the IPFDB and the LPM table are populated with entries corresponding to active hosts and layer 3 packets received by the I/O module are routed using the IPFDB and LPM table of the I/O module.
摘要:
The subject mailer described herein includes methods, systems, and computer readable media for automatically selecting between Internet protocol switching modes on a per-module basis in a packet forwarding device. According to one aspect, a method may include determining capacities of hardware longest prefix matching (LPM) tables located on each input/output (I/O) module in a multi-module IP packet forward device. The number of routes currently stored in a software LPM table may be determined. If the software LPM table can be stored within the hardware LPM table for an I/O module, an LPM mode may be automatically selected for that I/O module. If the contents of software LPM table cannot be stored within the hardware LPM table for a particular I/O module, the I/O module may be automatically transitioned to operate in an Internet protocol forwarding database (IPFDB) mode.
摘要:
Methods, systems, and computer program products for controlling updating of a layer 3 host table based on packet forwarding miss counts are disclosed. According to one method, layer 3 packets are routed using at least one of a layer 3 host table containing entries corresponding to remote hosts and a longest prefix matching table containing prefixes corresponding to remote hosts. For each layer 3 destination address for which a lookup in at least one table fails, a number of packets received within a time period are counted. Remote destination entries in the host table are replaced based on the counts.
摘要:
The subject matter described herein includes methods, systems, and computer program products for routing packets at a multi-mode layer 3 packet forwarding device. According to one aspect, the subject matter described herein includes operating a first of at least two modules in a host mode, and operating a second of at least two modules in a longest prefix matching (LPM) mode. Operating a module in a host mode includes populating a host table and an LPM table with entries corresponding to hosts and routing layer 3 packets received by the first module using the host and LPM tables. Operating a module in an LPM mode includes populating a host table with entries corresponding to hosts, populating an LPM table with entries corresponding to variable length Internet protocol (IP) addresses and next hop addresses, and routing layer 3 packets received by the second module using the host and LPM tables.
摘要:
An optical scanner in a retail store checkout stand includes a single item detector upstream of the scanner window. Output signals from the item detector and from symbol recognition logic are used to open and close a shutter in the beam path of the scanner laser. The shutter is opened and a first time out sequence is started when the beam path is interrupted. A second, short time out sequence is restarted each time a valid symbol is recognized. A third time out sequence of intermediate length supersedes the first time out sequence when the beam path is cleared. The laser shutter is closed and the symbol is transferred to a terminal or controller upon the completion of any active time out sequence or upon recognition of a predetermined number of identical symbols, whichever comes first.