Abstract:
Techniques and systems for processing within-distance queries are provided. A query for geometry objects within a query distance of a query geometry is received. An in-memory R-tree (IMR-tree) is generated for the query geometry. The IMR-tree includes nodes corresponding to edges of the query geometry. An R-tree index for a plurality of candidate geometries is accessed. At least one node of the R-tree index is processed by: generating an expanded bounding geometry based on the query distance, and using the IMR-tree to determine a topological relationship between the expanded bounding geometry and the query geometry. When the expanded bounding geometry intersects the query geometry, if at least one within-distance test is satisfied, the candidate geometries associated with the selected node are added to a result set. Otherwise, if the selected node is a non-leaf node of the R-tree index, child nodes of the selected node are processed.
Abstract:
Techniques and systems for processing within-distance queries are provided. A query for geometry objects within a query distance of a query geometry is received. An in-memory R-tree (IMR-tree) is generated for the query geometry. The IMR-tree includes nodes corresponding to edges of the query geometry. An R-tree index for a plurality of candidate geometries is accessed. At least one node of the R-tree index is processed by: generating an expanded bounding geometry based on the query distance, and using the IMR-tree to determine a topological relationship between the expanded bounding geometry and the query geometry. When the expanded bounding geometry intersects the query geometry, if at least one within-distance test is satisfied, the candidate geometries associated with the selected node are added to a result set. Otherwise, if the selected node is a non-leaf node of the R-tree index, child nodes of the selected node are processed.
Abstract:
A method and apparatus for querying a database table containing point spatial data and without indexes is provided. A request for point spatial data in the table includes a query window provided by the user and describing an area of interest in which the user desires the point spatial data contained therein. The query window is tiled to create interior tiles and boundary tiles. A first query is formed to determine the point spatial data contained in the interior tiles. A second query is formed to determine the point spatial data contained within the boundary tiles and also within the query window. The second query includes a function that tests to determine whether the point spatial data within a boundary tile also lies within the query window. The first and second queries are executed in part on an enhanced data storage device and the results joined and returned to the user in answer to the request.
Abstract:
A method and apparatus for querying a database table containing point spatial data and without indexes is provided. A request for point spatial data in the table includes a query window provided by the user and describing an area of interest in which the user desires the point spatial data contained therein. The query window is tiled to create interior tiles and boundary tiles. A first query is formed to determine the point spatial data contained in the interior tiles. A second query is formed to determine the point spatial data contained within the boundary tiles and also within the query window. The second query includes a function that tests to determine whether the point spatial data within a boundary tile also lies within the query window. The first and second queries are executed in part on an enhanced data storage device and the results joined and returned to the user in answer to the request.