Automated provisioning for database performance

    公开(公告)号:US11782926B2

    公开(公告)日:2023-10-10

    申请号:US17573897

    申请日:2022-01-12

    CPC classification number: G06F16/24545 G06F16/217 G06N20/00 G06N20/20

    Abstract: Embodiments utilize trained query performance machine learning (QP-ML) models to predict an optimal compute node cluster size for a given in-memory workload. The QP-ML models include models that predict query task runtimes at various compute node cardinalities, and models that predict network communication time between nodes of the cluster. Embodiments also utilize an analytical model to predict overlap between predicted task runtimes and predicted network communication times. Based on this data, an optimal cluster size is selected for the workload. Embodiments further utilize trained data capacity machine learning (DC-ML) models to predict a minimum number of compute nodes needed to run a workload. The DC-ML models include models that predict the size of the workload dataset in a target data encoding, models that predict the amount of memory needed to run the queries in the workload, and models that predict the memory needed to accommodate changes to the dataset.

    Efficient adjustment of spin-locking parameter values

    公开(公告)号:US11379456B2

    公开(公告)日:2022-07-05

    申请号:US17060999

    申请日:2020-10-01

    Abstract: Systems and methods for adjusting parameters for a spin-lock implementation of concurrency control are described herein. In an embodiment, a system continuously retrieves, from a resource management system, one or more state values defining a state of the resource management system. Based on the one or more state values, the system determines that the resource management system has reached a steady state and, in response adjusts a plurality of parameters for spin-locking performed by said resource management system to identify optimal values for the plurality of parameters. After adjusting the plurality of parameters, the system detects, based on one or more current state values, a workload change in the resource management system and, in response, readjusts the plurality of parameters for spin-locking performed by said resource management system to identify new optimal values for the parameters.

    AUTOMATED PROVISIONING FOR DATABASE PERFORMANCE

    公开(公告)号:US20220138199A1

    公开(公告)日:2022-05-05

    申请号:US17573897

    申请日:2022-01-12

    Abstract: Embodiments utilize trained query performance machine learning (QP-ML) models to predict an optimal compute node cluster size for a given in-memory workload. The QP-ML models include models that predict query task runtimes at various compute node cardinalities, and models that predict network communication time between nodes of the cluster. Embodiments also utilize an analytical model to predict overlap between predicted task runtimes and predicted network communication times. Based on this data, an optimal cluster size is selected for the workload. Embodiments further utilize trained data capacity machine learning (DC-ML) models to predict a minimum number of compute nodes needed to run a workload. The DC-ML models include models that predict the size of the workload dataset in a target data encoding, models that predict the amount of memory needed to run the queries in the workload, and models that predict the memory needed to accommodate changes to the dataset.

    PREDICTION OF BUFFER POOL SIZE FOR TRANSACTION PROCESSING WORKLOADS

    公开(公告)号:US20230022884A1

    公开(公告)日:2023-01-26

    申请号:US17381072

    申请日:2021-07-20

    Abstract: Techniques are described herein for prediction of an buffer pool size (BPS). Before performing BPS prediction, gathered data are used to determine whether a target workload is in a steady state. Historical utilization data gathered while the workload is in a steady state are used to predict object-specific BPS components for database objects, accessed by the target workload, that are identified for BPS analysis based on shares of the total disk I/O requests, for the workload, that are attributed to the respective objects. Preference of analysis is given to objects that are associated with larger shares of disk I/O activity. An object-specific BPS component is determined based on a coverage function that returns a percentage of the database object size (on disk) that should be available in the buffer pool for that database object. The percentage is determined using either a heuristic-based or a machine learning-based approach.

    Automated provisioning for database performance

    公开(公告)号:US11256698B2

    公开(公告)日:2022-02-22

    申请号:US16382085

    申请日:2019-04-11

    Abstract: Embodiments utilize trained query performance machine learning (QP-ML) models to predict an optimal compute node cluster size for a given in-memory workload. The QP-ML models include models that predict query task runtimes at various compute node cardinalities, and models that predict network communication time between nodes of the cluster. Embodiments also utilize an analytical model to predict overlap between predicted task runtimes and predicted network communication times. Based on this data, an optimal cluster size is selected for the workload. Embodiments further utilize trained data capacity machine learning (DC-ML) models to predict a minimum number of compute nodes needed to run a workload. The DC-ML models include models that predict the size of the workload dataset in a target data encoding, models that predict the amount of memory needed to run the queries in the workload, and models that predict the memory needed to accommodate changes to the dataset.

    AUTOMATED CONFIGURATION PARAMETER TUNING FOR DATABASE PERFORMANCE

    公开(公告)号:US20210263934A1

    公开(公告)日:2021-08-26

    申请号:US17318972

    申请日:2021-05-12

    Abstract: Embodiments implement a prediction-driven, rather than a trial-driven, approach to automate database configuration parameter tuning for a database workload. This approach uses machine learning (ML) models to test performance metrics resulting from application of particular database parameters to a database workload, and does not require live trials on the DBMS managing the workload. Specifically, automatic configuration (AC) ML models are trained, using a training corpus that includes information from workloads being run by DBMSs, to predict performance metrics based on workload features and configuration parameter values. The trained AC-ML models predict performance metrics resulting from applying particular configuration parameter values to a given database workload being automatically tuned. Based on correlating changes to configuration parameter values with changes in predicted performance metrics, an optimization algorithm is used to converge to an optimal set of configuration parameters. The optimal set of configuration parameter values is automatically applied for the given workload.

    Prediction of buffer pool size for transaction processing workloads

    公开(公告)号:US11868261B2

    公开(公告)日:2024-01-09

    申请号:US17381072

    申请日:2021-07-20

    CPC classification number: G06F12/0842 G06F16/24552 G06F2212/6022

    Abstract: Techniques are described herein for prediction of an buffer pool size (BPS). Before performing BPS prediction, gathered data are used to determine whether a target workload is in a steady state. Historical utilization data gathered while the workload is in a steady state are used to predict object-specific BPS components for database objects, accessed by the target workload, that are identified for BPS analysis based on shares of the total disk I/O requests, for the workload, that are attributed to the respective objects. Preference of analysis is given to objects that are associated with larger shares of disk I/O activity. An object-specific BPS component is determined based on a coverage function that returns a percentage of the database object size (on disk) that should be available in the buffer pool for that database object. The percentage is determined using either a heuristic-based or a machine learning-based approach.

    Automated configuration parameter tuning for database performance

    公开(公告)号:US11567937B2

    公开(公告)日:2023-01-31

    申请号:US17318972

    申请日:2021-05-12

    Abstract: Embodiments implement a prediction-driven, rather than a trial-driven, approach to automate database configuration parameter tuning for a database workload. This approach uses machine learning (ML) models to test performance metrics resulting from application of particular database parameters to a database workload, and does not require live trials on the DBMS managing the workload. Specifically, automatic configuration (AC) ML models are trained, using a training corpus that includes information from workloads being run by DBMSs, to predict performance metrics based on workload features and configuration parameter values. The trained AC-ML models predict performance metrics resulting from applying particular configuration parameter values to a given database workload being automatically tuned. Based on correlating changes to configuration parameter values with changes in predicted performance metrics, an optimization algorithm is used to converge to an optimal set of configuration parameters. The optimal set of configuration parameter values is automatically applied for the given workload.

    EFFICIENT ADJUSTMENT OF SPIN-LOCKING PARAMETER VALUES

    公开(公告)号:US20220107933A1

    公开(公告)日:2022-04-07

    申请号:US17060999

    申请日:2020-10-01

    Abstract: Systems and methods for adjusting parameters for a spin-lock implementation of concurrency control are described herein. In an embodiment, a system continuously retrieves, from a resource management system, one or more state values defining a state of the resource management system. Based on the one or more state values, the system determines that the resource management system has reached a steady state and, in response adjusts a plurality of parameters for spin-locking performed by said resource management system to identify optimal values for the plurality of parameters. After adjusting the plurality of parameters, the system detects, based on one or more current state values, a workload change in the resource management system and, in response, readjusts the plurality of parameters for spin-locking performed by said resource management system to identify new optimal values for the parameters.

    Automated configuration parameter tuning for database performance

    公开(公告)号:US11061902B2

    公开(公告)日:2021-07-13

    申请号:US16298837

    申请日:2019-03-11

    Abstract: Embodiments implement a prediction-driven, rather than a trial-driven, approach to automate database configuration parameter tuning for a database workload. This approach uses machine learning (ML) models to test performance metrics resulting from application of particular database parameters to a database workload, and does not require live trials on the DBMS managing the workload. Specifically, automatic configuration (AC) ML models are trained, using a training corpus that includes information from workloads being run by DBMSs, to predict performance metrics based on workload features and configuration parameter values. The trained AC-ML models predict performance metrics resulting from applying particular configuration parameter values to a given database workload being automatically tuned. Based on correlating changes to configuration parameter values with changes in predicted performance metrics, an optimization algorithm is used to converge to an optimal set of configuration parameters. The optimal set of configuration parameter values is automatically applied for the given workload.

Patent Agency Ranking