Datacenter level utilization prediction without operating system involvement

    公开(公告)号:US11657256B2

    公开(公告)日:2023-05-23

    申请号:US17867552

    申请日:2022-07-18

    Abstract: Embodiments use a hierarchy of machine learning models to predict datacenter behavior at multiple hardware levels of a datacenter without accessing operating system generated hardware utilization information. The accuracy of higher-level models in the hierarchy of models is increased by including, as input to the higher-level models, hardware utilization predictions from lower-level models. The hierarchy of models includes: server utilization models and workload/OS prediction models that produce predictions at a server device-level of a datacenter; and also top-of-rack switch models and backbone switch models that produce predictions at higher levels of the datacenter. These models receive, as input, hardware utilization information from non-OS sources. Based on datacenter-level network utilization predictions from the hierarchy of models, the datacenter automatically configures its hardware to avoid any predicted over-utilization of hardware in the datacenter. Also, the predictions from the hierarchy of models can be used to detect anomalies of datacenter hardware behavior.

    APPLICATION- AND INFRASTRUCTURE-AWARE ORCHESTRATION FOR CLOUD MONITORING APPLICATIONS

    公开(公告)号:US20200259722A1

    公开(公告)日:2020-08-13

    申请号:US16271535

    申请日:2019-02-08

    Abstract: Herein are computerized techniques for autonomous and artificially intelligent administration of a computer cloud health monitoring system. In an embodiment, an orchestration computer automatically detects a current state of network elements of a computer network by processing: a) a network plan that defines a topology of the computer network, and b) performance statistics of the network elements. The network elements include computers that each hosts virtual execution environment(s). Each virtual execution environment hosts analysis logic that transforms raw performance data of a network element into a portion of the performance statistics. For each computer, a configuration specification for each virtual execution environment of the computer is automatically generated based on the network plan and the current state of the computer network. At least one virtual execution environment is automatically tuned and/or re-provisioned based on a generated configuration specification.

    DATACENTER LEVEL UTILIZATION PREDICTION WITHOUT OPERATING SYSTEM INVOLVEMENT

    公开(公告)号:US20220351023A1

    公开(公告)日:2022-11-03

    申请号:US17867552

    申请日:2022-07-18

    Abstract: Embodiments use a hierarchy of machine learning models to predict datacenter behavior at multiple hardware levels of a datacenter without accessing operating system generated hardware utilization information. The accuracy of higher-level models in the hierarchy of models is increased by including, as input to the higher-level models, hardware utilization predictions from lower-level models. The hierarchy of models includes: server utilization models and workload/OS prediction models that produce predictions at a server device-level of a datacenter; and also top-of-rack switch models and backbone switch models that produce predictions at higher levels of the datacenter. These models receive, as input, hardware utilization information from non-OS sources. Based on datacenter-level network utilization predictions from the hierarchy of models, the datacenter automatically configures its hardware to avoid any predicted over-utilization of hardware in the datacenter. Also, the predictions from the hierarchy of models can be used to detect anomalies of datacenter hardware behavior.

    Datacenter level utilization prediction without operating system involvement

    公开(公告)号:US11443166B2

    公开(公告)日:2022-09-13

    申请号:US16173655

    申请日:2018-10-29

    Abstract: Embodiments use a hierarchy of machine learning models to predict datacenter behavior at multiple hardware levels of a datacenter without accessing operating system generated hardware utilization information. The accuracy of higher-level models in the hierarchy of models is increased by including, as input to the higher-level models, hardware utilization predictions from lower-level models. The hierarchy of models includes: server utilization models and workload/OS prediction models that produce predictions at a server device-level of a datacenter; and also top-of-rack switch models and backbone switch models that produce predictions at higher levels of the datacenter. These models receive, as input, hardware utilization information from non-OS sources. Based on datacenter-level network utilization predictions from the hierarchy of models, the datacenter automatically configures its hardware to avoid any predicted over-utilization of hardware in the datacenter. Also, the predictions from the hierarchy of models can be used to detect anomalies of datacenter hardware behavior.

    Estimate bit error rates of network cables

    公开(公告)号:US10917203B2

    公开(公告)日:2021-02-09

    申请号:US16414954

    申请日:2019-05-17

    Abstract: Embodiments use Bayesian techniques to efficiently estimate the bit error rates (BERs) of cables in a computer network at a customizable level of confidence. Specifically, a plurality of probability records are maintained for a given cable in a computer system, where each probability record is associated with a hypothetical BER for the cable, and reflects a probability that the cable has the associated hypothetical BER. At configurable time intervals, the probability records are updated using statistics gathered from a switch port connected to the cable. In order to estimate the BER of the cable at a given confidence level, embodiments determine which probability record is associated with a probability mass that indicates the confidence level. The estimate for the cable BER is the hypothetical BER that is associated with the indicated probability mass. Embodiments store the estimate in memory and utilize the estimate to aid in maintaining the computer system.

    Automated mechanisms for ensuring correctness of evolving datacenter configurations

    公开(公告)号:US10795690B2

    公开(公告)日:2020-10-06

    申请号:US16174582

    申请日:2018-10-30

    Abstract: Herein are computerized techniques for generation, costing/scoring, optimal selection, and reporting of intermediate configurations for a datacenter change plan. In an embodiment, a computer receives a current configuration of a datacenter and a target configuration. New configurations are generated based on the current configuration. A cost function is applied to calculate a cost of each new configuration based on measuring a logical difference between the new configuration and the target configuration. A particular new configuration is selected that has a least cost. When the particular configuration satisfies the target configuration, the datacenter is reconfigured based on the particular configuration. Otherwise, this process is (e.g. iteratively) repeated with the particular configuration instead used as the current configuration. In embodiments, new configurations are randomly, greedily, and/or manually generated. In an embodiment, new configurations obey design invariants that constrain which changes and/or configurations are attainable.

    Application- and infrastructure-aware orchestration for cloud monitoring applications

    公开(公告)号:US10892961B2

    公开(公告)日:2021-01-12

    申请号:US16271535

    申请日:2019-02-08

    Abstract: Herein are computerized techniques for autonomous and artificially intelligent administration of a computer cloud health monitoring system. In an embodiment, an orchestration computer automatically detects a current state of network elements of a computer network by processing: a) a network plan that defines a topology of the computer network, and b) performance statistics of the network elements. The network elements include computers that each hosts virtual execution environment(s). Each virtual execution environment hosts analysis logic that transforms raw performance data of a network element into a portion of the performance statistics. For each computer, a configuration specification for each virtual execution environment of the computer is automatically generated based on the network plan and the current state of the computer network. At least one virtual execution environment is automatically tuned and/or re-provisioned based on a generated configuration specification.

Patent Agency Ranking