Abstract:
A miniature spectrometer comprises an input port, a light sensor, a miniature diffraction optical grating, an optical grating accommodation slot, a cushion, and an affixing plate. The miniature spectrometer may further comprise a waveguide device, and the optical grating accommodation slot is positioned in a space defined by an opening of the waveguide device. The input port receives an optical signal which proceeds in the waveguide device. The miniature diffraction optical grating separates the optical signal into numerous spectral components to be projected onto the light sensor. The cushion is stacked on the miniature diffraction optical grating, with both disposed in the optical grating accommodation slot. The affixing plate is disposed on the waveguide device to apply a compressing force on the cushion to affix the miniature diffraction optical grating in the optical grating accommodation slot.
Abstract:
An optical mechanism for a miniaturized spectrometer comprises an input unit, an upper waveguide plate, a lower waveguide plate, and a miniature diffraction grating. The input unit is used to receive an optical signal and direct the optical signal to the interior of the optical mechanism. The upper waveguide plate has a first reflective surface. The lower waveguide plate having a second reflective surface aligned substantially parallel to the upper waveguide plate. The first reflective surface is located opposite to the second reflective surface. An optical channel is formed between the first reflective surface and the second reflective surface, so that optical signal from the input unit can travel in the optical channel. The miniature diffraction grating separates the optical signal transmitted in the optical channel into a plurality of spectral components and directs the spectral components to an image capture module at an end of the miniaturized spectrometer.
Abstract:
A hybrid diffraction grating, a mold used to produce the hybrid diffraction grating, and their manufacturing methods are described. In one aspect, a hybrid diffraction grating comprises a grating main body and a reflective layer. The grating main body comprises numerous diffraction structures. When viewed along a top-view direction, the numerous diffraction structures are arranged in a pattern defined by a profile. The profile determines various blaze angles of the numerous diffraction structures. The reflective layer, disposed on the diffraction structures, exhibits characteristics of the numerous diffraction structures.
Abstract:
A hybrid diffraction grating, a mold used to produce the hybrid diffraction grating, and their manufacturing methods are described. In one aspect, a hybrid diffraction grating comprises a grating main body and a reflective layer. The grating main body comprises numerous diffraction structures. When viewed along a top-view direction, the numerous diffraction structures are arranged in a pattern defined by a profile. The profile determines various blaze angles of the numerous diffraction structures. The reflective layer, disposed on the diffraction structures, exhibits characteristics of the numerous diffraction structures.