Abstract:
A cam mechanism includes a cam ring including at least one cam rib which is formed on a peripheral surface of the cam ring to extend non-linearly; and a follower ring which is concentric with the cam ring, and includes at least one pair of cam followers which are formed on a peripheral surface of the follower ring to be positioned apart from each other in an axial direction of the follower ring to hold the cam rib between the pair of cam followers. Central positions of the pair of cam followers are offset from each other in a circumferential direction of the follower ring.
Abstract:
A cam mechanism includes a cam ring including a cam rib which is formed on a peripheral surface of the cam ring; and a follower ring which is concentric with the cam ring, the follower ring including a pair of cam followers which hold the cam rib between the pair of cam followers. Upon the cam ring and the follower ring being engaged with each other in an assembly process thereof, an inner cam follower of the pair of cam followers first approaches an end of the cam rib in a lengthwise direction thereof, and an outer cam follower of the pair of cam followers subsequently approaches the same end of the cam rib. A portion of the outer cam follower is extended outwards from a position of a peripheral surface of the inner cam follower in a circumferential direction of the follower ring.
Abstract:
A lens barrel includes a linear guide ring; a linearly movable ring which is provided inside the linear guide ring and has a cam on an outer circumferential surface; and a hand-operated rotating ring, provided outside the linear guide ring, which is capable of rotating in a circumferential direction and is incapable of rotating in an optical axis direction, with respect to the linear guide ring and which has a first penetrate groove. The linear guide ring, the linearly movable ring and the hand-operated rotating ring are provided concentrically to each other. A rotation motion of the hand-operated rotating ring with respect to the linear guide ring causes the linearly movable ring to move linearly along the optical axis direction, via the linear guide ring. The linear guide ring has a second penetrate groove penetrated in a radial direction. A projection member, which is to be engaged with the cam provided on the linear movable ring, via the second penetrate groove of the linear guide ring, is inserted from an outside of the hand-operated rotating ring.
Abstract:
A bayonet coupling including an annular groove and bayonet lugs on an inner ring-shaped member and an outer ring-shaped member; and insertion openings formed on either the inner ring-shaped member or the outer ring-shaped member which includes the annular groove. The bayonet lugs includes first bayonet lugs associated with the insertion openings to be insertable into the annular groove through the insertion openings, and a second bayonet lug for which no associated insertion opening is formed. The insertion openings, the first bayonet lugs and the second bayonet lug are shaped so that the second bayonet lug is insertable into the annular groove with axes of the outer and inner ring-shaped members being inclined to each other, and so that the first bayonet lugs are insertable into the annular groove through the insertion openings, respectively, after the second bayonet lug is inserted into the annular groove.
Abstract:
A hot crimping structure for fixing at least one lens element to a lens frame made of synthetic resin, the lens element being accommodated in a lens holder opening of the lens frame, a portion of the lens frame being crimped by heat to serve as a crimped edge which lies on a surface of the lens element adjacent to a rim of the lens element. The lens frame includes an outward expansion surface which extends outwards from a close vicinity of the rim of the lens element. A hot crimping tool is brought into contact with the outward expansion surface to form a recess on the outward expansion surface by heat, to thereby produce the crimped edge by movement of melting synthetic resin which is melted due to the formation of the recess.
Abstract:
A soft focus lens barrel includes a stationary barrel; a distance operation ring, a soft focus operation ring, and an image surface operation ring, supported by the stationary barrel; a focus guide mechanism which varies a focal position of first through fourth lens groups by moving first and second lens group frames in the optical axis direction without varying the distance therebetween via rotation of the distance operation ring; a spherical aberration guide mechanism which varies spherical aberrations of the first through fourth lens groups by moving third and fourth lens group frames in the optical axis direction via rotation of the soft focus operation ring; and a field curvature guide mechanism which varies curvature of field produced by the first through fourth lens groups by solely moving the first lens group frame in the optical axis direction via rotation of the image surface operation ring.