Abstract:
This disclosure presents methods and systems for deblending blended seismic data obtained during simultaneous shooting acquisition into deblended seismic data gathers. Methods and systems iteratively separate the blended seismic data into the deblended seismic data gathers based on semblance analysis of a residual difference between the blended seismic data and the deblended seismic data gathers. Each deblended seismic data gather is associated with one of the sources and appears to have been obtained without substantial interference from seismic energy produced by other sources.
Abstract:
A system for constraining a dither time can comprise a source and a controller coupled to the source. The controller can be configured to actuate the source in sequence, while the source is moving through a fluid volume at a bottom speed, with an actuation time interval between each actuation comprising a sum of a nominal time and a dither time for each actuation and constrain the dither time for each actuation such that a reduction of the actuation time interval relative to a directly precedent actuation time interval is at most a threshold dither time difference, wherein the threshold dither time difference corresponds to a maximum bottom speed.
Abstract:
A system for constraining a dither time can comprise a source and a controller coupled to the source. The controller can be configured to actuate the source in sequence, while the source is moving through a fluid volume at a bottom speed, with an actuation time interval between each actuation comprising a sum of a nominal time and a dither time for each actuation and constrain the dither time for each actuation such that a reduction of the actuation time interval relative to a directly precedent actuation time interval is at most a threshold dither time difference, wherein the threshold dither time difference corresponds to a maximum bottom speed.
Abstract:
A method for estimation of water properties from seismic data can include determining a number of travel times for at least one event based, at least in part, on predefined values for a plurality of water properties, determining an alignment of data values for each of the number of travel times determined for the at least one event, and determining an estimation of a plurality of undetermined water property values based, at least in part, on the alignment of the data values for each of the number of travel times producing a high quantitative measure of a coherence value.
Abstract:
This disclosure presents methods and systems for deblending blended seismic data obtained during simultaneous shooting acquisition into deblended seismic data gathers. Methods and systems iteratively separate the blended seismic data into the deblended seismic data gathers based on semblance analysis of a residual difference between the blended seismic data and the deblended seismic data gathers. Each deblended seismic data gather is associated with one of the sources and appears to have been obtained without substantial interference from seismic energy produced by other sources.
Abstract:
Systems and computer readable media are described that actuate at least one marine seismic source according to a constrained sequence. The sequence exhibits an actuation time or distance interval between each actuation. The actuation time or distance interval corresponds to the sum of a nominal time or distance and a respective dither time or dither distance for each actuation. The sequence is constrained such that differences between consecutive dither times or dither distances remain within a threshold dither difference. Constraining the sequence according to the threshold dither difference enables increased bottom speeds for the source (i.e., increased speeds of the source relative to the seafloor), while still maintaining at least a minimum actuation time or distance interval for the source, taking into account both the nominal time or distance and the respective dither times or dither differences.
Abstract:
Computational systems and methods for randomizing the order in which multiple sources are fired in simultaneous source acquisition are described. In one aspect, pseudo-randomly shifted time delays are generated for each shot interval of a marine-survey-time line. Each shifted time delay is assigned to one or the sources. The sources within each shot interval are fired based on the shifted time delays.
Abstract:
Computational systems and methods for randomizing the order in which multiple sources are fired in simultaneous source acquisition are described. In one aspect, pseudo-randomly shifted time delays are generated for each shot interval of a marine-survey-time line. Each shifted time delay is assigned to one or the sources. The sources within each shot interval are fired based on the shifted time delays.
Abstract:
Computational systems and methods for randomizing the order in which multiple sources are fired in simultaneous source acquisition are described. In one aspect, pseudo-randomly shifted time delays are generated for each shot interval of a marine-survey-time line. Each shifted time delay is assigned to one or the sources. The sources within each shot interval are fired based on the shifted time delays.
Abstract:
A system for constraining a dither time can comprise a source and a controller coupled to the source. The controller can be configured to actuate the source in sequence, while the source is moving through a fluid volume at a bottom speed, with an actuation time interval between each actuation comprising a sum of a nominal time and a dither time for each actuation and constrain the dither time for each actuation such that a reduction of the actuation time interval relative to a directly precedent actuation time interval is at most a threshold dither time difference, wherein the threshold dither time difference corresponds to a maximum bottom speed.