Abstract:
Provided are a voice audio encoding device, voice audio decoding device, voice audio encoding method, and voice audio decoding method that efficiently perform bit distribution and improve sound quality. Dominant frequency band identification unit identifies a dominant frequency band having a norm factor value that is the maximum value within the spectrum of an input voice audio signal. Dominant group determination units and non-dominant group determination unit group all sub-bands into a dominant group that contains the dominant frequency band and a non-dominant group that contains no dominant frequency band. Group bit distribution unit distributes bits to each group on the basis of the energy and norm variance of each group. Sub-band bit distribution unit redistributes the bits that have been distributed to each group to each sub-band in accordance with the ratio of the norm to the energy of the groups.
Abstract:
Provided is a direction of arrival estimation device wherein: a calculation circuit calculates a frequency weighting factor for each of a plurality of frequency components of signals recorded in a microphone array, on the basis of the differences among unit vectors indicating the directions of the sound sources of each of the plurality of frequency components; and an estimation circuit estimates the direction of arrival of a signal from the sound source, on the basis of the frequency weighting factors.
Abstract:
This encoding device is able to encode an S signal efficiently in MS prediction encoding. An M signal encoding unit generates first encoding information by encoding a sum signal indicating a sum of a left channel signal and a right channel signal that constitute a stereo signal. An energy difference calculation unit calculates a prediction parameter for predicting a difference signal indicating a difference between the left channel signal and the right channel signal by using a parameter regarding an energy difference between the left channel signal and the right channel signal. An entropy encoding unit generates second encoding information by encoding the prediction parameter.
Abstract:
An audio signal decoding apparatus is provided that includes a receiver that receives an encoded information, a memory, and a processor that demultiplexes the encoded information, including encoding parameters that are used for decoding a low frequency spectrum and index information that identifies a most correlated portion from a low frequency spectrum for one or more high frequency subbands. The processor also replicates a high frequency subband spectrum based on the index information using a synthesized low frequency spectrum, the synthesized low frequency spectrum being obtained by decoding the encoding parameters. The processor further estimates a frequency of a harmonic component in the synthesized low frequency spectrum, adjusts a frequency of a harmonic component in the high frequency subband spectrum using the estimated harmonic frequency, and generates an output signal using the synthesized low frequency spectrum and the high frequency subband spectrum.
Abstract:
The purpose of the present invention is to more efficiently extend, using a low bit rate, the bandwidth of input signals having a harmonics structure, in order to obtain better audio quality. The present invention is installed in a device that extends bandwidth for audio signal encoding and decoding. This novel bandwidth extension encoding identifies a low-frequency spectrum component having the highest correlation to a high-frequency bandwidth signal among input signals, duplicates a high-frequency spectrum by energy adjustment of said component, and maintains the harmonic relationship between the low-frequency spectrum and the duplicated high-frequency spectrum by adjusting the spectral peak position of the duplicated high-frequency spectrum, on the basis of a harmonic frequency estimated from a composite low-frequency spectrum.
Abstract:
An encoding device comprising: a quantization circuit that generates a quantization parameter that includes information about a vector quantization codebook; and a control circuit that sets the number of available bits according to conditions for encoding based on the difference between the number of bits available for encoding of the target sub-vector and the number of bits for the quantization parameter of the target sub-vector.
Abstract:
An encoding device is provided with: a quantizing circuit which generates quantization parameters including first information on a vector quantization codebook, and second information on code vectors included in the codebook; and a control circuit which employs the second number of bits based on the difference between the first number of bits available for encoding of a sub-vector in the vector quantization, and the number of bits for the sub-vector quantization parameters, to control encoding of the first information with respect to the sub-vector.
Abstract:
Provided are a voice audio encoding device, voice audio decoding device, voice audio encoding method, and voice audio decoding method that efficiently perform bit distribution and improve sound quality. Dominant frequency band identification unit identifies a dominant frequency band having a norm factor value that is the maximum value within the spectrum of an input voice audio signal. Dominant group determination units and non-dominant group determination unit group all sub-bands into a dominant group that contains the dominant frequency band and a non-dominant group that contains no dominant frequency band. Group bit distribution unit distributes bits to each group on the basis of the energy and norm variance of each group. Sub-band bit distribution unit redistributes the bits that have been distributed to each group to each sub-band in accordance with the ratio of the norm to the energy of the groups.
Abstract:
An encoding apparatus includes: a quantization circuit that generates a quantization parameter including first information related to a codebook of vector quantization and second information related to code vectors included in the codebook; and a control circuit that determines which one of first encoding of the first information for the target sub-vector and second encoding of a second number of bits based on the difference between an allocated number of bits for vector quantization and the number of bits of the quantization parameter is to be executed, in accordance with the number of bits available for encoding sub-vectors including at least a target sub-vector among a plurality of sub-vectors in the vector quantization.
Abstract:
In the acoustic object extraction device, beam forming processing units generate a first acoustic signal by beam forming in an arrival direction of a signal from an acoustic object with respect to a microphone array and generate a second acoustic signal by beam forming in an arrival direction of a signal from the acoustic object with respect to a microphone array, and a common component extraction unit extracts, on the basis of a similarity between the spectrum of the first acoustic signal and the spectrum of the second acoustic signal and from the first acoustic signal and the second acoustic signal, a signal containing a common component corresponding to the acoustic object. The common component extraction unit divides the spectrums of the first acoustic signal and the second acoustic signal into a plurality of frequency sections and calculates a similarity for each of the frequency sections.