Abstract:
The imaging device comprises: an imaging unit, a shooting processor, an exposure information setter, and an image processor. The imaging unit stores electric charges in response to an incident light for each frame, thereby outputting an image signal. The shooting processor controls storage times, during which the imaging unit stores the electric charges. The exposure information setter sets first exposure control information that controls brightness of a first image signal generated based on a first storage time and second exposure control information that controls brightness of a second image signal generated based on a second storage time. The image processor combines the first and the second image signal. In the case where the first exposure control information satisfies a given condition, the exposure information setter sets the first and the second exposure control information such that storage times corresponding to frames adjacent to each other become equal to each other.
Abstract:
An imaging device according to the present disclosure includes: an axially rotatable imaging unit; a detector that detects a photographing direction of the imaging unit; a processor that performs image processing on image data generated by the imaging unit; and a controller that changes a setting method of an image processing parameter depending on the photographing direction detected by the detector, the image processing parameter being given to the image data by the processor.