Abstract:
Disclosed are processes for producing glycerol-related products. One process for producing glycerol-related products comprises introducing glycerol and an alkylation reagent to a substantially oxygen free environment. Another process for producing glycerol-related products comprises introducing a glycerol and tetramethylammonium hydroxide to a substantially oxygen free environment.
Abstract:
Disclosed are processes for producing glycerol related products. One process comprises introducing a biomass and an alkylation reagent to a substantially oxygen free environment, hydrolyzing at a temperature at or above 200° C. one or more lipid glycerides in the biomass, methylating one or more fatty acids in the biomass with methyl groups from the alkylation reagent, wherein the hydrolyzing and methylating occur contemporaneously and separating resulting biodiesel and methylated glycerol-related products from a residue of the biomass by condensation.
Abstract:
Disclosed is the direct conversion process for producing biodiesel from a biomass. The direct conversion process for producing biodiesel from a biomass comprises reacting a feed stock comprising a biomass and an alkylation reagent in a substantially oxygen free environment at a temperature sufficient to hydrolyze one or more lipid glycerides in the biomass and alkylated one or more fatty acids in the reaction. The process may comprise reacting a feed stock comprising an algal biomass and tetramethylammonium hydroxide in a substantially oxygen free environment at a temperature between 250° C. and 500° C. The direct conversion process for producing biodiesel may further comprise reacting oil containing lipid glycerides with an alkylation reagent at a sufficient temperature to esterify the oil. The fatty acid alkyl esters produced from the reacted feed stock are recovered. The recovered fatty acid alkyl esters, as an essential component of biodiesel, may be formulated into biodiesel.
Abstract:
Use of an algal for biodiesel fuel selected for growing strain of production, the genus Desmodesmus wherein said strain was under high nutrient conditions and is characterized as having a determined fatty by acid nuclear methyl ester content of 2.6% magnetic resonance analysis, nitrogen content of 11.3% and a carbon content of 46.3%. Given the growth and elemental composition of this strain t the instant algal strain is of particular use as a biomass source for biofuel lipids and/or biodiesel fuel production.
Abstract:
Disclosed herein is the production of hydrocarbon based fuel from micro-organisms and algae that comprise algaenan without requiring prior removal of water, as well as the production of hydrocarbon based fuel directly from the algaenan itself. Also disclosed herein are feed material for the processes disclosed herein comprising modified algae and algaenan that selectively produce hydrocarbon of desired chain lengths, along with the process of modifying the algae and algaenan. Also disclosed herein is the production of both hydrocarbon and organic fertilizer from algae without the need to remove the water from the algae prior to processing.
Abstract:
Disclosed herein is the use of terrestrial plant materials (e.g., leaves and bark) that contain biopolymer materials to produce hydrocarbon-rich crude oils that can be refined further into hydrocarbon-based biofuels, via the hydrous pyrolysis method, which involves heating to subcritical temperatures and pressures in an aqueous medium. One can also isolate the aliphatic biopolymers and utilize them as feedstocks for production of the hydrocarbon-rich crude via hydrous pyrolysis.
Abstract:
Disclosed is the direct conversion process for producing biodiesel from a biomass. The direct conversion process for producing biodiesel from a biomass comprises reacting a feed stock comprising a biomass and an alkylation reagent in a substantially oxygen free environment at a temperature sufficient to hydrolyze one or more lipid glycerides in the biomass and alkylated one or more fatty acids in the reaction. The process may comprise reacting a feed stock comprising an algal biomass and tetramethylammonium hydroxide in a substantially oxygen free environment at a temperature between 250° C. and 500° C. The direct conversion process for producing biodiesel may further comprise reacting oil containing lipid glycerides with an alkylation reagent at a sufficient temperature to esterify the oil. The fatty acid alkyl esters produced from the reacted feed stock are recovered. The recovered fatty acid alkyl esters, as an essential component of biodiesel, may be formulated into biodiesel.
Abstract:
Described herein are fertilizers for enhancing the carbon sequestration properties of soil. The fertilizers described herein include algae comprising algaenan. In one aspect, the fertilizer includes (a) one or more organic nitrogen sources, (b) one or more synthetic nitrogen sources, and (c) algae comprising algaenan. The fertilizers and fertilizer compositions release nitrogen at a predictable rate over time, which can enhance growth of plants that are fertile with the composition described herein.
Abstract:
Disclosed herein is the use of terrestrial plant materials (e.g., leaves and bark) that contain biopolymer materials to produce hydrocarbon-rich crude oils that can be refined further into hydrocarbon-based biofuels, via the hydrous pyrolysis method, which involves heating to subcritical temperatures and pressures in an aqueous medium. One can also isolate the aliphatic biopolymers and utilize them as feedstocks for production of the hydrocarbon-rich crude via hydrous pyrolysis.