Abstract:
Integrated circuit Hall sensor system comprising a plurality of elementary blocks (EB), each elementary block including a Hall cell (4), a differential pair (8) of an input stage of a Differential Difference Amplifier (DDA), and terminals (12a, 12b), wherein the terminals (12a, 12b) are placed laterally on opposing outer sides of each elementary block parallel to a Y axis and the plurality of elementary blocks are arranged in a juxtaposed manner to form at least one row (6a, 6b) extending along an X axis orthogonal to the Y axis and interconnected by the terminals.
Abstract:
A magnetic field sensor for measuring a direction of a magnetic field in a plane comprises a sensing structure comprising a ring-shaped well, a plurality of contacts of equal size placed at equal distance from each other along the ring-shaped well, and an electronic circuit comprising a plurality of electronic switches associated with the contacts of the sensing structure, a logic block for controlling the electronic switches, at least one current source, a means for measuring a difference between a first voltage and a second voltage, a timing circuit providing a control signal for controlling the logic block and providing a reference signal, wherein the logic block is adapted to close and open the electronic switches under the control of the control signal according to a predetermined scheme such that a predetermined number of contacts of the plurality of contacts form a vertical Hall element that is supplied with current from the at least one current source and that has two contacts connected to the means for measuring, and such that the vertical Hall element is moved in steps along the ring-shaped well, and a means for measuring a phase shift between the reference signal and an output signal of the voltage measuring means.
Abstract:
A method for sensing an angular orientation of a magnetic field includes providing a set of N≧2 Hall effect devices, each having a detection direction and including two pairs of connectors; providing at least one band pass filter having a fundamental frequency f=1/Tf; providing at least one current source for outputting an electrical current at its output; applying, during a first time period of a duration 0.5 Tf and in a specific sequence of the N Hall effect devices, to each of the N Hall effect devices a respective wiring scheme Wi+, during respective subsequent time periods of durations ti; and applying, during a second time period of a duration 0.5 Tf, subsequent to the first time period of a duration 0.5 Tf, and in the same specific sequence of the N Hall effect devices, to each of the N Hall effect devices a respective wiring scheme Wi−, during respective subsequent time periods of the same durations ti.
Abstract:
The method for sensing an angular orientation of a magnetic field includes a) providing a set of N≧2 Hall effect devices, each having a detection direction and comprising two pairs of connectors; b) providing at least one band pass filter having a fundamental frequency f=1/Tf; c) providing at least one current source for outputting an electrical current at its output; d1) applying, during a first time period of a duration 0.5 Tf and in a specific sequence of said N Hall effect devices, to each of said N Hall effect devices a respective wiring scheme Wi+, during respective subsequent time periods of durations ti; and d2) applying, during a second time period of a duration 0.5 Tf, subsequent to said first time period of a duration 0.5 Tf, and in the same specific sequence of said N Hall effect devices, to each of said N Hall effect devices a respective wiring scheme Wi−, during respective subsequent time periods of the same durations ti.
Abstract:
A sensor for sensing an angular orientation of a magnetic field of a magnet includes: N≧2 Hall effect devices (HD1, HD2, . . . ), each having a detection direction and including a first and a second pair of connectors, wherein, in presence of the magnetic field, a flow of an electric current between the connectors of the first pair allows to pick up a Hall voltage between the connectors of the second pair induced by the magnetic field, unless a magnetic field component of the magnetic field along the detection direction is zero, wherein the N Hall effect devices are aligned such that they have a common detection direction lying along an axis; a filtering-or-resonating unit (F) comprising an input and an output, wherein a signal outputted from the output is referred to as filtered signal.
Abstract:
Integrated circuit Hall sensor system comprising a plurality of elementary blocks (EB), each elementary block including a Hall cell (4), a differential pair (8) of an input stage of a Differential Difference Amplifier (DDA), and terminals (12a, 12b), wherein the terminals (12a, 12b) are placed laterally on opposing outer sides of each elementary block parallel to a Y axis and the plurality of elementary blocks are arranged in a juxtaposed manner to form at least one row (6a, 6b) extending along an X axis orthogonal to the Y axis and interconnected by the terminals.
Abstract:
A magnetic field sensor includes a sensing structure having a ring-shaped well, a plurality of contacts of equal size disposed along the ring-shaped well, a circuit having a plurality of electronic switches associated with the contacts of the sensing structure, a logic block for controlling the electronic switches, at least one current source, a voltage measuring device, a timing circuit providing a control signal for controlling the logic and providing a reference signal, wherein the logic block is configured to switch the switches under the control of the control signal so that a predetermined number of contacts of the plurality of contacts form a vertical Hall element supplied with current from the at least one current source and having two contacts connected to the voltage measuring device and circuitry configured to measure a phase shift between the reference signal and an output signal of the voltage measuring device.
Abstract:
A sensor for sensing an angular orientation of a magnetic field of a magnet includes: N≧2 Hall effect devices (HD1, HD2, . . . ), each having a detection direction and including a first and a second pair of connectors, wherein, in presence of the magnetic field, a flow of an electric current between the connectors of the first pair allows to pick up a Hall voltage between the connectors of the second pair induced by the magnetic field, unless a magnetic field component of the magnetic field along the detection direction is zero, wherein the N Hall effect devices are aligned such that they have a common detection direction lying along an axis; a filtering-or-resonating unit (F) comprising an input and an output, wherein a signal outputted from the output is referred to as filtered signal.
Abstract:
In a method for determining geometrical characteristics (d) of an anomaly (12) which changes the electrical conductivity in the region near the surface of an electrically conducting, in particular a metallic test object (10), a considerable simplification is achieved in that, in the region of the anomaly (12) in the test object (10), eddy currents (13, 14) of different frequencies are excited, and the magnetic field (By,0), which is produced by the excited eddy currents, is scanned in the vicinity of the anomaly (12) and the geometric characteristics of the anomaly are exclusively deduced from the distribution of the magnetic field (By,0).
Abstract:
In a method for determining geometrical characteristics (d) of an anomaly (12) which changes the electrical conductivity in the region near the surface of an electrically conducting, in particular a metallic test object (10), a considerable simplification is achieved in that, in the region of the anomaly (12) in the test object (10), eddy currents (13, 14) of different frequencies are excited, and the magnetic field (By,0), which is produced by the excited eddy currents, is scanned in the vicinity of the anomaly (12) and the geometric characteristics of the anomaly are exclusively deduced from the distribution of the magnetic field (By,0).