摘要:
In a combustor (1) for a gas turbine, the combustor (1) includes a burner system (2) and a fuel supply system (3). The burner system (2) includes at least two burner groups (A, B) each with at least one burner (5). The fuel supply system (3) includes a main line (7), which is connected to a fuel source (8), and also an auxiliary line (9) for each burner group (A, B). Each auxiliary line (9) is connected to each burner (5) of the associated burner group (A, B) and is connected to the main line (7) by a controllable distribution valve (10). A sensing system (11) measures pressure pulsation values and/or emission values for each burner group (A, B). A control system (12), in dependence upon the pulsation values and/or the emission values, controls the distribution valves (10) so that in each burner group (A, B) the pulsation values and/or the emission values assume and/or fall below predetermined threshold values.
摘要:
A combustion chamber (1), in particular in a gas turbine, has at least two burners (A-H) that are connected to a fuel supply (3) via controllable fuel valves (2′ and 2). Each burner (A to H) is assigned at least one optical measuring device (4) for detecting chemiluminescent radiation, and the combustion chamber (1) is assigned a pressure sensor (7) for detecting a combustion chamber pressure. The optical measuring device (4) and the pressure sensor (7) are connected to a computing and control device, which calculates a correlation value from the incoming measured values. A high correlation value signifies that the associated burner is prone to pulsation. The computing and control device (6) is designed in such a way that it determines the burner or a burner group with the highest correlation and controls the associated fuel valve(s) in such a way that more fuel is fed to the respective burner or the respective burner group, and the pulsation tendency thereof is thereby reduced.
摘要:
A combustion chamber (1), in particular in a gas turbine, has at least two burners (A-H) that are connected to a fuel supply (3) via controllable fuel valves (2′ and 2). Each burner (A to H) is assigned at least one optical measuring device (4) for detecting chemiluminescent radiation, and the combustion chamber (1) is assigned a pressure sensor (7) for detecting a combustion chamber pressure. The optical measuring device (4) and the pressure sensor (7) are connected to a computing and control device, which calculates a correlation value from the incoming measured values. A high correlation value signifies that the associated burner is prone to pulsation. The computing and control device (6) is designed in such a way that it determines the burner or a burner group with the highest correlation and controls the associated fuel valve(s) in such a way that more fuel is fed to the respective burner or the respective burner group, and the pulsation tendency thereof is thereby reduced.
摘要:
In a combustor (1) for a gas turbine, the combustor (1) includes a burner system (2) and a fuel supply system (3). The burner system (2) includes at least two burner groups (A, B) each with at least one burner (5). The fuel supply system (3) includes a main line (7), which is connected to a fuel source (8), and also an auxiliary line (9) for each burner group (A, B). Each auxiliary line (9) is connected to each burner (5) of the associated burner group (A, B) and is connected to the main line (7) by a controllable distribution valve (10). A sensing system (11) measures pressure pulsation values and/or emission values for each burner group (A, B). A control system (12), in dependence upon the pulsation values and/or the emission values, controls the distribution valves (10) so that in each burner group (A, B) the pulsation values and/or the emission values assume and/or fall below predetermined threshold values.
摘要:
What are described are a multiple burner arrangement and a method for operating such a multiple burner arrangement with a multiplicity of individual burners which are designed as premix burners and which serve for firing a combustion chamber of a thermal engine and each have a swirl space into which combustion supply air and fuel can be introduced so as to form a swirl flow, the swirl flow forming downstream of the premix burner, within the combustion chamber, a backflow zone in which a burner flame is formed.
摘要:
What are described are a multiple burner arrangement and a method for operating such a multiple burner arrangement with a multiplicity of individual burners which are designed as premix burners and which serve for firing a combustion chamber of a thermal engine and each have a swirl space into which combustion supply air and fuel can be introduced so as to form a swirl flow, the swirl flow forming downstream of the premix burner, within the combustion chamber, a backflow zone in which a burner flame is formed.
摘要:
A combustion device used in gas turbine engines to produce propulsion or rotate a shaft for power generation includes a can-annular combustor with a system of fuel and air inlet passages and nozzles that results in an optimal combustion environment of premixed fuel and air. The fuel-air inlets are placed at various longitudinal locations and circumferentially distributed, and direct the flow tangentially or nearly tangent to the can liner. The combustion device provides effective mixing of fuel and air, creates an environment for combustion that reduces pollutant emissions, reduces the need for costly pollution control devices, enhances ignition and flame stability, reduces piloting issues, and improves vibration reduction.
摘要:
A combustion device used in gas turbine engines to produce propulsion or rotate a shaft for power generation includes an annular combustor with a system of fuel and air inlet passages and nozzles that results in a staged combustion of premixed fuel and air. The fuel and air inlets are placed at various longitudinal locations circumferentially, and can take on different configurations where all nozzles inject a fuel-air mixture or some may inject only air. The combustion device provides an optimal mixing of fuel and air, creates an environment for combustion that reduces pollutant emissions reducing the need for costly pollution control devices, enhances ignition and flame stability, reduces piloting issues, allows increased fuel flexibility, decreases the required size of the first stage nozzle guide vane (NGV), and improves vibration reduction.
摘要:
Systems for stabilizing combustion while minimizing NOx generation by using high-flame-speed additives to stabilize the flame front in combustors operating at relatively low temperatures and/or under oxygen constraints. The system is adapted for use in coal-fired boilers, oil-fired boilers, and gas turbine engines. The methods stabilize the flame front to permit stable combustion under an expanded range of part-load conditions. The system provides substantially complete combustion of coal in coal boilers resulting in ash saleable for use in concrete manufacturing.
摘要:
A method of producing a calcined raw meal and of producing additional steam in an existing steam generator comprises the following steps: pulverized raw meal, hydrocarbon, primary air and secondary air are fed to a calciner system (60), wherein the raw meal is calcined in a temperature range between 850° C. and 950° C., the calcined raw meal is separated from the calciner flue gases at the exit of the calciner system, the calcined raw meal is directed through a cooler (70), in which it exchanges its heat with the secondary air, the calciner exhaust gases are directed in the gas path of the backpass of the steam generator (1) at an appropriate temperature window and are used for steam production. The raw meal consists mainly of limestone (CaCO3) and the calcined material is mainly lime (CaO). The fuel feed (4) to the steam generator (1) is reduced during introduction of the exhaust gases into its backpass.