摘要:
A mining structure is created which contains processed data from a data set. This data may be used to train one or more models. In addition to the selection of data to be used by model from data set, processing parameters are set, in one embodiment. For example, the discretization of a continuous variable into buckets, the number of buckets, and/or the sub-range corresponding to each bucket is set when the mining structure is created. The mining structure is processed, which causes the processing and storage of data from data set in the mining structure. After processing, the mining structure can be used by one or more models.
摘要:
A drill-through feature is provided which provides a universal drill-through to mining model source data from a trained mining model. In order for a user or application to obtain model content information on a given node of a model, a universal function is provided whereby the user specifies the node for a model and data set, and the cases underlying that node for that model and data set are returned. A sampling of underlying cases may be provided, where only a sampling of the cases represented in the node is requested.
摘要:
A drill-through feature is provided which provides a universal drill-through to mining model source data from a trained mining model. In order for a user or application to obtain model content information on a given node of a model, a universal function is provided whereby the user specifies the node for a model and data set, and the cases underlying that node for that model and data set are returned. A sampling of underlying cases may be provided, where only a sampling of the cases represented in the node is requested.
摘要:
Systems and methods are provided for producing a mining model accuracy display that depicts the model's accuracy at predicting a state for a multiple-state variable. The model predicts a state and provides an associated probability for each case. Points are graphed such that one coordinate of the data point corresponds to a number N of cases and the other coordinate corresponds to the number of correct predictions made in the top N cases by probability.
摘要:
Systems and methods are provided for producing displays of the accuracy of data mining or statistical models that produce associative predictions. For all cases in a testing data set, the model makes predictions and provides associated probabilities. The cases are sorted by their probability of making accurate predictions and a graph is made of the accuracy of the model over various subsets containing the highest probability cases as evaluated by the model. Where a number of probabilities are presented for the predictions in a basket of predictions, those probabilities are combined to yield a probability score for the entire basket. Additionally, the accuracy of a model over different basket sizes may be graphed. The accuracy graph may also be produced for any models making a prediction, by graphing the probability of making accurate predictions and a graph made of the accuracy of the model over various subsets of the data containing the highest probability cases.
摘要:
Systems and methods are provided for producing a mining model accuracy display that depicts the model's accuracy at predicting a state for a multiple-state variable. The model predicts a state and provides an associated probability for each case. Points are graphed such that one coordinate of the data point corresponds to a number N of cases and the other coordinate corresponds to the number of correct predictions made in the top N cases by probability.
摘要:
Systems and methods are provided for producing a mining model accuracy display that depicts the model's accuracy at predicting a state for a multiple-state variable. The model predicts a state and provides an associated probability for each case. Points are graphed such that one coordinate of the data point corresponds to a number N of cases and the other coordinate corresponds to the number of correct predictions made in the top N cases by probability.
摘要:
Systems and methods are provided for producing displays of the accuracy of data mining or statistical models that produce associative predictions. For all cases in a testing data set, the model makes predictions and provides associated probabilities. The cases are sorted by their probability of making accurate predictions and a graph is made of the accuracy of the model over various subsets containing the highest probability cases as evaluated by the model. Where a number of probabilities are presented for the predictions in a basket of predictions, those probabilities are combined to yield a probability score for the entire basket. Additionally, the accuracy of a model over different basket sizes may be graphed. The accuracy graph may also be produced for any models making a prediction, by graphing the probability of making accurate predictions and a graph made of the accuracy of the model over various subsets of the data containing the highest probability cases.
摘要:
Systems and methods are provided for producing a mining model accuracy display that depicts the model's accuracy at predicting a state for a multiple-state variable. The model predicts a state and provides an associated probability for each case. Points are graphed such that one coordinate of the data point corresponds to a number N of cases and the other coordinate corresponds to the number of correct predictions made in the top N cases by probability.
摘要:
Distribution displays for categories are provided which illuminate the distribution of continuous attributes over all cases in a category, and which provide a histogram of the population of the different states of categorical attributes. An array of such displays by attribute (in one dimension) and category (in another dimension) may be provided. Category diagram displays are also provided for visualizing the different categories, and their distributions, populations, and similarities. These are displayed through different shading of nodes and edges representing categories and the relationship between two categories, and through proximity of nodes.