EFFICIENT COMPUTATION OF THE MODULO OPERATION BASED ON DIVISOR (2n-1)
    1.
    发明申请
    EFFICIENT COMPUTATION OF THE MODULO OPERATION BASED ON DIVISOR (2n-1) 有权
    基于分数(2n-1)的模态运算的有效计算

    公开(公告)号:US20080010332A1

    公开(公告)日:2008-01-10

    申请号:US11456110

    申请日:2006-07-07

    申请人: QIANG SHEN

    发明人: QIANG SHEN

    IPC分类号: G06F7/38

    CPC分类号: G06F7/727

    摘要: A system and method for computing A mod (2n−1), where A is an m bit quantity, where n is a positive integer, where m is greater than or equal to n. The quantity A may be partitioned into a plurality of sections, each being at most n bits long. The value A mod (2n−1) may be computed by adding the sections in mod(2n−1) fashion. This addition of the sections of A may be performed in a single clock cycle using an adder tree, or, sequentially in multiple clock cycles using a two-input adder circuit provided the output of the adder circuit is coupled to one of the two inputs. The computation A mod (2n−1) may be performed as a part of an interleaving/deinterleaving operation, or, as part of an encryption/decryption operation.

    摘要翻译: 一种用于计算A mod(2-n-1)的系统和方法,其中A是m比特量,其中n是正整数,其中m大于或等于n。 数量A可以被划分成多个部分,每个部分最多n位长。 可以通过以mod(2-n -I-1)方式加上这些部分来计算值A mod(2≤n≤-1)。 可以使用加法器树在单个时钟周期中执行A的这些部分的添加,或者使用双输入加法器电路在多个时钟周期中顺序地执行,只要加法器电路的输出耦合到两个输入中的一个。 作为交织/解交织操作的一部分,或作为加密/解密操作的一部分,可以执行计算A mod(2-n-1)。